Transitive Orientations, Möbius Functions, and Complete Semi-Thue Systems for Free Partially Commutative Monoids
Séminaire lotharingien de combinatoire, Tome 19 (1988)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Let I \subseteq XxX be an independence relation over a finite alphabet X and M=X*/{(ab,ba): (a,b)\in I} the associated free partially commutative monoid. The Möbius function of M is a polynomial in the ring of formal power series ZM>>. Taking representatives we may view it as a polynomial in ZX*>>. We call it unambiguous if its formal inverse in ZX*>> is the characteristic series over a set of representatives of M. The main result states that there is an unambiguous Möbius function of M in ZX*>> if and only if there is a transitive orientation of I. It is known that transitive orientations correspond exactly to finite complete semi-Thue systems S \subseteq X*x X* which define M. We obtain a one-to-one correspondence between unambiguous Möbius functions, transitive orientations and finite (normalized) complete semi-Thue systems.
The paper has been finally published under the same title in Automata, languages and programming (Tampere, 1988), pp. 176-187, Lecture Notes in Comput. Sci., 317, Springer, Berlin, 1988.
@article{SLC_1988_19_a2,
author = {Volker Diekert},
title = {Transitive {Orientations,} {M\"obius} {Functions,} and {Complete} {Semi-Thue} {Systems} for {Free} {Partially} {Commutative} {Monoids}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {19},
year = {1988},
url = {http://geodesic.mathdoc.fr/item/SLC_1988_19_a2/}
}
TY - JOUR AU - Volker Diekert TI - Transitive Orientations, Möbius Functions, and Complete Semi-Thue Systems for Free Partially Commutative Monoids JO - Séminaire lotharingien de combinatoire PY - 1988 VL - 19 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_1988_19_a2/ ID - SLC_1988_19_a2 ER -
Volker Diekert. Transitive Orientations, Möbius Functions, and Complete Semi-Thue Systems for Free Partially Commutative Monoids. Séminaire lotharingien de combinatoire, Tome 19 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_19_a2/