Permutabilitäten kleiner endlicher Gruppen
Séminaire lotharingien de combinatoire, Tome 19 (1988)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Given a group G, let P(n) be the property that for all x1,...,xn in G there exists a product of these elements in a permuted order which is equal to (the non-permuted poduct) x1...xn. Now defined P(G) to be the minimal n for which G possesses the property P(n) but not P(n-1). We present results on the (highly non-trivial) computation of P(G), in particular for groups G of order up to 20.
@article{SLC_1988_19_a18,
author = {Volkmar Welker},
title = {Permutabilit\"aten kleiner endlicher {Gruppen}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {19},
year = {1988},
url = {http://geodesic.mathdoc.fr/item/SLC_1988_19_a18/}
}
Volkmar Welker. Permutabilitäten kleiner endlicher Gruppen. Séminaire lotharingien de combinatoire, Tome 19 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_19_a18/