A Remark on the Representation of the Free Partial Commutative Monoid
Séminaire lotharingien de combinatoire, Tome 19 (1988)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We consider free partially commutative monoids, i.e., free monoids where some pairs of letters are allowed to commute. We show that such a monoid can be faithfully represented by 2x2 matrices with integer entries if and only if iit is the direct product of a free commutative monoid with a free product of free commutative monoids.
The paper has been finally published under the title "A remark on the representation of trace monoids" in Semigroup Forum 40 (1990), 143-152.
@article{SLC_1988_19_a1,
author = {Christian Choffrut},
title = {A {Remark} on the {Representation} of the {Free} {Partial} {Commutative} {Monoid}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {19},
year = {1988},
url = {http://geodesic.mathdoc.fr/item/SLC_1988_19_a1/}
}
Christian Choffrut. A Remark on the Representation of the Free Partial Commutative Monoid. Séminaire lotharingien de combinatoire, Tome 19 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_19_a1/