Obtaining Generating Functions from Ordered-Partition Recurrence Formulas
Séminaire lotharingien de combinatoire, Tome 16 (1987)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

In solving two enumeration problems in chrmoatic graph theory it was discovered that the natural recurrence formulas which developed included summing over ordered-partitions. Using an infinite sum these formulas can be turned into generating functions that lead to closed form expressions. This technique is illustrated on the problem of counting how many ways a set of some non-intersecting diagonals can be placed in an n-gon and on the problem of counting non-crossing colorings of a cycle. These sequences are reminiscent of some work of Carlitz and Riordan. The following version is available:
@article{SLC_1987_16_a4,
     author = {Daniel I. A. Cohen and Victor S. Miller},
     title = {Obtaining {Generating} {Functions} from {Ordered-Partition} {Recurrence} {Formulas}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {16},
     year = {1987},
     url = {http://geodesic.mathdoc.fr/item/SLC_1987_16_a4/}
}
TY  - JOUR
AU  - Daniel I. A. Cohen
AU  - Victor S. Miller
TI  - Obtaining Generating Functions from Ordered-Partition Recurrence Formulas
JO  - Séminaire lotharingien de combinatoire
PY  - 1987
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1987_16_a4/
ID  - SLC_1987_16_a4
ER  - 
%0 Journal Article
%A Daniel I. A. Cohen
%A Victor S. Miller
%T Obtaining Generating Functions from Ordered-Partition Recurrence Formulas
%J Séminaire lotharingien de combinatoire
%D 1987
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1987_16_a4/
%F SLC_1987_16_a4
Daniel I. A. Cohen; Victor S. Miller. Obtaining Generating Functions from Ordered-Partition Recurrence Formulas. Séminaire lotharingien de combinatoire, Tome 16 (1987). http://geodesic.mathdoc.fr/item/SLC_1987_16_a4/