Interpolation dans les K-espèces
Séminaire lotharingien de combinatoire, 14s (1986)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Let F be a species without structure on the empty set and wwith only one singleton (e.g., the speciees of circular permutations), and let H be an arbitrary species. For n ∈ N we write F<n> = F o ... o F for the (n-fold iterated) species of F-arborescences of height ≤ n, and we write H o F<n> for the species of H-forests of such arborescences. It is our aim to give a combinatorial meaning to H o F<t> for values of t that are not positive integers. We show that if t ∈ K, where K is a binomial ring, then H o F<t> is a K-speecies in the sense of Y.N. Yeh. The results also holds if H and F ar themselves K-species, as well as in the multisort case. Our approach is simple: it consists of an adaptation, in the context of K-species, of the classical interpolation formula of Newton. This approach has already been used by the author to implement a "continuous" iteration of formal power series, and by Joyal for combinatorially implementing the inverse (t = -1) of virual species (i.e., of Z-species).

@article{SLC_1986_14s_a8,
     author = {Gilbert Labelle},
     title = {Interpolation dans les {K-esp\`eces}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {14s},
     year = {1986},
     url = {http://geodesic.mathdoc.fr/item/SLC_1986_14s_a8/}
}
TY  - JOUR
AU  - Gilbert Labelle
TI  - Interpolation dans les K-espèces
JO  - Séminaire lotharingien de combinatoire
PY  - 1986
VL  - 14s
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1986_14s_a8/
ID  - SLC_1986_14s_a8
ER  - 
%0 Journal Article
%A Gilbert Labelle
%T Interpolation dans les K-espèces
%J Séminaire lotharingien de combinatoire
%D 1986
%V 14s
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1986_14s_a8/
%F SLC_1986_14s_a8
Gilbert Labelle. Interpolation dans les K-espèces. Séminaire lotharingien de combinatoire, 14s (1986). http://geodesic.mathdoc.fr/item/SLC_1986_14s_a8/