On Hales-Jewett's Theorem
Séminaire lotharingien de combinatoire, 14s (1986)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We prove that, for every finite semigroup S, there exist elements a1,a2,...,ak,ak+1 of S and integers i1,i2,...,ik such that a1 . xi1 . a2 . xi2 ... ak . xik . ak+1= a1 . yi1 . a2 . yi2 ... ak . yik . ak+1 for each x,y of S. The following versions are available:
@article{SLC_1986_14s_a4,
author = {Giuseppe Pirillo},
title = {On {Hales-Jewett's} {Theorem}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {14s},
year = {1986},
url = {http://geodesic.mathdoc.fr/item/SLC_1986_14s_a4/}
}
Giuseppe Pirillo. On Hales-Jewett's Theorem. Séminaire lotharingien de combinatoire, 14s (1986). http://geodesic.mathdoc.fr/item/SLC_1986_14s_a4/