On Hales-Jewett's Theorem
Séminaire lotharingien de combinatoire, 14s (1986)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
We prove that, for every finite semigroup S, there exist elements a1,a2,...,ak,ak+1 of S and integers i1,i2,...,ik such that a1 . xi1 . a2 . xi2 ... ak . xik . ak+1= a1 . yi1 . a2 . yi2 ... ak . yik . ak+1 for each x,y of S. The following versions are available:
@article{SLC_1986_14s_a4,
author = {Giuseppe Pirillo},
title = {On {Hales-Jewett's} {Theorem}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {1986},
volume = {14s},
url = {http://geodesic.mathdoc.fr/item/SLC_1986_14s_a4/}
}
Giuseppe Pirillo. On Hales-Jewett's Theorem. Séminaire lotharingien de combinatoire, 14s (1986). http://geodesic.mathdoc.fr/item/SLC_1986_14s_a4/