On Hales-Jewett's Theorem
Séminaire lotharingien de combinatoire, 14s (1986)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We prove that, for every finite semigroup S, there exist elements a1,a2,...,ak,ak+1 of S and integers i1,i2,...,ik such that a1 . xi1 . a2 . xi2 ... ak . xik . ak+1= a1 . yi1 . a2 . yi2 ... ak . yik . ak+1 for each x,y of S. The following versions are available:
@article{SLC_1986_14s_a4,
     author = {Giuseppe Pirillo},
     title = {On {Hales-Jewett's} {Theorem}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {14s},
     year = {1986},
     url = {http://geodesic.mathdoc.fr/item/SLC_1986_14s_a4/}
}
TY  - JOUR
AU  - Giuseppe Pirillo
TI  - On Hales-Jewett's Theorem
JO  - Séminaire lotharingien de combinatoire
PY  - 1986
VL  - 14s
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1986_14s_a4/
ID  - SLC_1986_14s_a4
ER  - 
%0 Journal Article
%A Giuseppe Pirillo
%T On Hales-Jewett's Theorem
%J Séminaire lotharingien de combinatoire
%D 1986
%V 14s
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1986_14s_a4/
%F SLC_1986_14s_a4
Giuseppe Pirillo. On Hales-Jewett's Theorem. Séminaire lotharingien de combinatoire, 14s (1986). http://geodesic.mathdoc.fr/item/SLC_1986_14s_a4/