Une combinatoire du pléthysme
Séminaire lotharingien de combinatoire, 14s (1986)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Let F(x1,x2,...) and $G(x1,x2,...) be formal power series in infinitely many variables. The plethysm FoG is the series F(G1,G2,...) where Gk(x1,x2,...) = G(x1k,x2k,...). Using ideas from O. Nava and G.-C. Rota [Adv. in Math. 58 (1985), 61-88], we explain the combinatorics underlying plethysms by defining a binary operation called substitution on S-species.
The paper has been finally published under the same title in J. Combin. Theory Ser. A 46 (1987), 291-305.
@article{SLC_1986_14s_a0,
author = {Francois Bergeron},
title = {Une combinatoire du pl\'ethysme},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {14s},
year = {1986},
url = {http://geodesic.mathdoc.fr/item/SLC_1986_14s_a0/}
}
Francois Bergeron. Une combinatoire du pléthysme. Séminaire lotharingien de combinatoire, 14s (1986). http://geodesic.mathdoc.fr/item/SLC_1986_14s_a0/