Enumerating Regular Maps and Normal Subgroups of the Modular Group
Séminaire lotharingien de combinatoire, Tome 14 (1986) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

The icosahedron is a regular orientable triangular map with rotation group isomorphic to PSL2(q) for q = 4 and q = 5 . We shall consider, for each finite group G, the number NG of regular orientable triangular (= r.o.t.) maps with orientation-preserving automorphism group G. The method used is quite general, though here we will concentrate on the groups G = PSL2(q); thus we are enumerating the `q-analogues' of the icosahedron. The following version is available:
@article{SLC_1986_14_a5,
     author = {Gareth Jones},
     title = {Enumerating {Regular} {Maps} and {Normal} {Subgroups} of the {Modular} {Group}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {1986},
     volume = {14},
     url = {http://geodesic.mathdoc.fr/item/SLC_1986_14_a5/}
}
TY  - JOUR
AU  - Gareth Jones
TI  - Enumerating Regular Maps and Normal Subgroups of the Modular Group
JO  - Séminaire lotharingien de combinatoire
PY  - 1986
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SLC_1986_14_a5/
ID  - SLC_1986_14_a5
ER  - 
%0 Journal Article
%A Gareth Jones
%T Enumerating Regular Maps and Normal Subgroups of the Modular Group
%J Séminaire lotharingien de combinatoire
%D 1986
%V 14
%U http://geodesic.mathdoc.fr/item/SLC_1986_14_a5/
%F SLC_1986_14_a5
Gareth Jones. Enumerating Regular Maps and Normal Subgroups of the Modular Group. Séminaire lotharingien de combinatoire, Tome 14 (1986). http://geodesic.mathdoc.fr/item/SLC_1986_14_a5/