Enumerating Regular Maps and Normal Subgroups of the Modular Group
Séminaire lotharingien de combinatoire, Tome 14 (1986)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

The icosahedron is a regular orientable triangular map with rotation group isomorphic to PSL2(q) for q = 4 and q = 5 . We shall consider, for each finite group G, the number NG of regular orientable triangular (= r.o.t.) maps with orientation-preserving automorphism group G. The method used is quite general, though here we will concentrate on the groups G = PSL2(q); thus we are enumerating the `q-analogues' of the icosahedron. The following version is available:
@article{SLC_1986_14_a5,
     author = {Gareth Jones},
     title = {Enumerating {Regular} {Maps} and {Normal} {Subgroups} of the {Modular} {Group}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {14},
     year = {1986},
     url = {http://geodesic.mathdoc.fr/item/SLC_1986_14_a5/}
}
TY  - JOUR
AU  - Gareth Jones
TI  - Enumerating Regular Maps and Normal Subgroups of the Modular Group
JO  - Séminaire lotharingien de combinatoire
PY  - 1986
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1986_14_a5/
ID  - SLC_1986_14_a5
ER  - 
%0 Journal Article
%A Gareth Jones
%T Enumerating Regular Maps and Normal Subgroups of the Modular Group
%J Séminaire lotharingien de combinatoire
%D 1986
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1986_14_a5/
%F SLC_1986_14_a5
Gareth Jones. Enumerating Regular Maps and Normal Subgroups of the Modular Group. Séminaire lotharingien de combinatoire, Tome 14 (1986). http://geodesic.mathdoc.fr/item/SLC_1986_14_a5/