Enumerating Regular Maps and Normal Subgroups of the Modular Group
Séminaire lotharingien de combinatoire, Tome 14 (1986)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
The icosahedron is a regular orientable triangular map with rotation group isomorphic to PSL2(q) for q = 4 and q = 5 . We shall consider, for each finite group G, the number NG of regular orientable triangular (= r.o.t.) maps with orientation-preserving automorphism group G. The method used is quite general, though here we will concentrate on the groups G = PSL2(q); thus we are enumerating the `q-analogues' of the icosahedron. The following version is available:
@article{SLC_1986_14_a5,
author = {Gareth Jones},
title = {Enumerating {Regular} {Maps} and {Normal} {Subgroups} of the {Modular} {Group}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {14},
year = {1986},
url = {http://geodesic.mathdoc.fr/item/SLC_1986_14_a5/}
}
Gareth Jones. Enumerating Regular Maps and Normal Subgroups of the Modular Group. Séminaire lotharingien de combinatoire, Tome 14 (1986). http://geodesic.mathdoc.fr/item/SLC_1986_14_a5/