Enumerating Regular Maps and Normal Subgroups of the Modular Group
Séminaire lotharingien de combinatoire, Tome 14 (1986)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
The icosahedron is a regular orientable triangular map with rotation group isomorphic to PSL2(q) for q = 4 and q = 5 . We shall consider, for each finite group G, the number NG of regular orientable triangular (= r.o.t.) maps with orientation-preserving automorphism group G. The method used is quite general, though here we will concentrate on the groups G = PSL2(q); thus we are enumerating the `q-analogues' of the icosahedron. The following version is available:
@article{SLC_1986_14_a5,
author = {Gareth Jones},
title = {Enumerating {Regular} {Maps} and {Normal} {Subgroups} of the {Modular} {Group}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {1986},
volume = {14},
url = {http://geodesic.mathdoc.fr/item/SLC_1986_14_a5/}
}
Gareth Jones. Enumerating Regular Maps and Normal Subgroups of the Modular Group. Séminaire lotharingien de combinatoire, Tome 14 (1986). http://geodesic.mathdoc.fr/item/SLC_1986_14_a5/