Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Convex notions can be defined in various combinatorial structures. In the second part, we consider greedoids, graphs and hypergraphs, acyclic oriented matroids, partially ordered sets, and trees. The usefulness of convexity ideas is illustrated, for instance concerning alternative characterizations of shelling structures as convex geometries, and in connection with the Hadwiger conjecture on graph contraction and coloring.
The paper has been finally published under the title "Convexity in combinatorial structures" in Proceedings of the 14th winter school on abstract analysis (Srní, 1986). Rend. Circ. Mat. Palermo (2) Suppl. No. 14, (1987), 261-293.
@article{SLC_1985_12_a0,
author = {Pierre Duchet},
title = {La convexit\'e dans les structures combinatoires},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {12},
year = {1985},
url = {http://geodesic.mathdoc.fr/item/SLC_1985_12_a0/}
}
Pierre Duchet. La convexité dans les structures combinatoires. Séminaire lotharingien de combinatoire, Tome 12 (1985). http://geodesic.mathdoc.fr/item/SLC_1985_12_a0/