La convexité dans les structures combinatoires
Séminaire lotharingien de combinatoire, Tome 12 (1985)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Axiomatic convexity investigates properties from usual convexity in the framework of a purely abstract structure, such as a segment structure or a closure space (whose closed sets play the role of the convex sets). It includes, e.g., the synthetic approach to convexity and the search for general relations among parameters such as the Helly, partition and exchange numbers. Recent developments on these two topics are reviewed in the first part of the paper; the nerve problem and varieties are also mentioned.

Convex notions can be defined in various combinatorial structures. In the second part, we consider greedoids, graphs and hypergraphs, acyclic oriented matroids, partially ordered sets, and trees. The usefulness of convexity ideas is illustrated, for instance concerning alternative characterizations of shelling structures as convex geometries, and in connection with the Hadwiger conjecture on graph contraction and coloring.

The paper has been finally published under the title "Convexity in combinatorial structures" in Proceedings of the 14th winter school on abstract analysis (Srní, 1986). Rend. Circ. Mat. Palermo (2) Suppl. No. 14, (1987), 261-293.

@article{SLC_1985_12_a0,
     author = {Pierre Duchet},
     title = {La convexit\'e dans les structures combinatoires},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {12},
     year = {1985},
     url = {http://geodesic.mathdoc.fr/item/SLC_1985_12_a0/}
}
TY  - JOUR
AU  - Pierre Duchet
TI  - La convexité dans les structures combinatoires
JO  - Séminaire lotharingien de combinatoire
PY  - 1985
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1985_12_a0/
ID  - SLC_1985_12_a0
ER  - 
%0 Journal Article
%A Pierre Duchet
%T La convexité dans les structures combinatoires
%J Séminaire lotharingien de combinatoire
%D 1985
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1985_12_a0/
%F SLC_1985_12_a0
Pierre Duchet. La convexité dans les structures combinatoires. Séminaire lotharingien de combinatoire, Tome 12 (1985). http://geodesic.mathdoc.fr/item/SLC_1985_12_a0/