Rekurrente und transiente Bäme
Séminaire lotharingien de combinatoire, Tome 10 (1984)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

A connected graph is called transient if with probability greater than 0 a random walk starting from some vertex does not return to this vertex, otherwise it is called recurrent. We ask the question of what can be said about trees in Z3: which trees are recurrent, which trees which are transient? We discuss several examples in which we determine whether they are recurrent or transient. Moreover, we conjecture that trees which "grow slowly" (in a precise sense) are recurrent.
@article{SLC_1984_10_a8,
     author = {Peter Gerl},
     title = {Rekurrente und transiente {B\"ame}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {1984},
     volume = {10},
     url = {http://geodesic.mathdoc.fr/item/SLC_1984_10_a8/}
}
TY  - JOUR
AU  - Peter Gerl
TI  - Rekurrente und transiente Bäme
JO  - Séminaire lotharingien de combinatoire
PY  - 1984
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SLC_1984_10_a8/
ID  - SLC_1984_10_a8
ER  - 
%0 Journal Article
%A Peter Gerl
%T Rekurrente und transiente Bäme
%J Séminaire lotharingien de combinatoire
%D 1984
%V 10
%U http://geodesic.mathdoc.fr/item/SLC_1984_10_a8/
%F SLC_1984_10_a8
Peter Gerl. Rekurrente und transiente Bäme. Séminaire lotharingien de combinatoire, Tome 10 (1984). http://geodesic.mathdoc.fr/item/SLC_1984_10_a8/