Einfache Irrfahrten auf radialen Bämen
Séminaire lotharingien de combinatoire, Tome 10 (1984) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

Nearest-neighbour random walks on the nonnegative integers with transition probabilities p0,1=1, pk,k-1=g k, pk,k+1=1-gk (0gk1, k=1,2,...) are studied using generating functions and continued fraction expansions. In particular, when (gk) is a periodic sequence, local limit theorems are proved and the harmonic functions are determined. These results are applied to simple random walks on certain trees.

The paper has been finally published under the title "Random walks and periodic continued fractions" in Adv. in Appl. Probab. 17 (1985), 67-84.

@article{SLC_1984_10_a7,
     author = {Wolfgang Woess},
     title = {Einfache {Irrfahrten} auf radialen {B\"amen}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {1984},
     volume = {10},
     url = {http://geodesic.mathdoc.fr/item/SLC_1984_10_a7/}
}
TY  - JOUR
AU  - Wolfgang Woess
TI  - Einfache Irrfahrten auf radialen Bämen
JO  - Séminaire lotharingien de combinatoire
PY  - 1984
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SLC_1984_10_a7/
ID  - SLC_1984_10_a7
ER  - 
%0 Journal Article
%A Wolfgang Woess
%T Einfache Irrfahrten auf radialen Bämen
%J Séminaire lotharingien de combinatoire
%D 1984
%V 10
%U http://geodesic.mathdoc.fr/item/SLC_1984_10_a7/
%F SLC_1984_10_a7
Wolfgang Woess. Einfache Irrfahrten auf radialen Bämen. Séminaire lotharingien de combinatoire, Tome 10 (1984). http://geodesic.mathdoc.fr/item/SLC_1984_10_a7/