Shellability of Exponentional Structures
Séminaire lotharingien de combinatoire, Tome 10 (1984)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Let Π(d)n denote the set of partitions of nd whose blocks are divisible by d, let Πn,r denote the set of vector partitions of the Cartesian product of r copies of n, and let χn denote the set of colored graphs on a vertex set of n elements. Each of these sets has a natural partial ordering. We show that each of these partially ordered sets is shellable, using the notion of recursive atom orderings.

The paper has been finally published under the same title in Order 3 (1986), 47-54.

@article{SLC_1984_10_a5,
     author = {Bruce E. Sagan},
     title = {Shellability of {Exponentional} {Structures}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {10},
     year = {1984},
     url = {http://geodesic.mathdoc.fr/item/SLC_1984_10_a5/}
}
TY  - JOUR
AU  - Bruce E. Sagan
TI  - Shellability of Exponentional Structures
JO  - Séminaire lotharingien de combinatoire
PY  - 1984
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1984_10_a5/
ID  - SLC_1984_10_a5
ER  - 
%0 Journal Article
%A Bruce E. Sagan
%T Shellability of Exponentional Structures
%J Séminaire lotharingien de combinatoire
%D 1984
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1984_10_a5/
%F SLC_1984_10_a5
Bruce E. Sagan. Shellability of Exponentional Structures. Séminaire lotharingien de combinatoire, Tome 10 (1984). http://geodesic.mathdoc.fr/item/SLC_1984_10_a5/