Canonical Forms of Borel-measurable Mappings Δ: [ω]ω -> R
Séminaire lotharingien de combinatoire, Tome 10 (1984)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We prove a Ramsey-type theorem which generalizes the canonization theorem of P. Erdös and R. Rado [J. London Math. Soc. 25 (1950), 249-255] and a result of P. Pudlak and V. Rödl [Discrete Math. 39 (1982), 67-73].

The paper has been finally published under the same title in J. Combin. Theory Ser. A 40 (1985), 409-417.

@article{SLC_1984_10_a4,
     author = {Hans J\"urgen Pr\"omel and Bernd Voigt},
     title = {Canonical {Forms} of {Borel-measurable} {Mappings} {\ensuremath{\Delta}:} [\ensuremath{\omega}]\ensuremath{\omega} -> {R}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {10},
     year = {1984},
     url = {http://geodesic.mathdoc.fr/item/SLC_1984_10_a4/}
}
TY  - JOUR
AU  - Hans Jürgen Prömel
AU  - Bernd Voigt
TI  - Canonical Forms of Borel-measurable Mappings Δ: [ω]ω -> R
JO  - Séminaire lotharingien de combinatoire
PY  - 1984
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1984_10_a4/
ID  - SLC_1984_10_a4
ER  - 
%0 Journal Article
%A Hans Jürgen Prömel
%A Bernd Voigt
%T Canonical Forms of Borel-measurable Mappings Δ: [ω]ω -> R
%J Séminaire lotharingien de combinatoire
%D 1984
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1984_10_a4/
%F SLC_1984_10_a4
Hans Jürgen Prömel; Bernd Voigt. Canonical Forms of Borel-measurable Mappings Δ: [ω]ω -> R. Séminaire lotharingien de combinatoire, Tome 10 (1984). http://geodesic.mathdoc.fr/item/SLC_1984_10_a4/