Canonical Forms of Borel-measurable Mappings Δ: [ω]ω -> R
Séminaire lotharingien de combinatoire, Tome 10 (1984)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We prove a Ramsey-type theorem which generalizes the canonization theorem of P. Erdös and R. Rado [J. London Math. Soc. 25 (1950), 249-255] and a result of P. Pudlak and V. Rödl [Discrete Math. 39 (1982), 67-73].
The paper has been finally published under the same title in J. Combin. Theory Ser. A 40 (1985), 409-417.
@article{SLC_1984_10_a4,
author = {Hans J\"urgen Pr\"omel and Bernd Voigt},
title = {Canonical {Forms} of {Borel-measurable} {Mappings} {\ensuremath{\Delta}:} [\ensuremath{\omega}]\ensuremath{\omega} -> {R}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {10},
year = {1984},
url = {http://geodesic.mathdoc.fr/item/SLC_1984_10_a4/}
}
Hans Jürgen Prömel; Bernd Voigt. Canonical Forms of Borel-measurable Mappings Δ: [ω]ω -> R. Séminaire lotharingien de combinatoire, Tome 10 (1984). http://geodesic.mathdoc.fr/item/SLC_1984_10_a4/