A Dual Form of Erdös-Rado's Canonization Theorem
Séminaire lotharingien de combinatoire, Tome 10 (1984)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Carlson and Simpson proved a theorem, which is, in a certain sense, a dual form of Ramsey's theorem. Moreover, their result can be viewed as an infinite generalization of the Graham-Rothschild partition theorem for n-parameter sets. A canonizing version of the Graham-Rothschild theorem has been given by Voigt and the author, extending the original partition theorem for n-parameter sets much in the same way as the Erdös-Rado canonization theorem extends Ramsey's theorem.

The purpose of our work is to establish a canonizing version of the Carlson-Simpson result. This can be regarded as a dual form of the Erdös-Rado canonization theorem. As corollaries, we obtain results which are of interest in their own sake.

The paper has been finally published as a joint paper with S. G. Simpson and B. Voigt under the same title in J. Combin. Theory Ser. A 42 (1986), 159-178.

@article{SLC_1984_10_a3,
     author = {Hans J\"urgen Pr\"omel},
     title = {A {Dual} {Form} of {Erd\"os-Rado's} {Canonization} {Theorem}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {10},
     year = {1984},
     url = {http://geodesic.mathdoc.fr/item/SLC_1984_10_a3/}
}
TY  - JOUR
AU  - Hans Jürgen Prömel
TI  - A Dual Form of Erdös-Rado's Canonization Theorem
JO  - Séminaire lotharingien de combinatoire
PY  - 1984
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1984_10_a3/
ID  - SLC_1984_10_a3
ER  - 
%0 Journal Article
%A Hans Jürgen Prömel
%T A Dual Form of Erdös-Rado's Canonization Theorem
%J Séminaire lotharingien de combinatoire
%D 1984
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1984_10_a3/
%F SLC_1984_10_a3
Hans Jürgen Prömel. A Dual Form of Erdös-Rado's Canonization Theorem. Séminaire lotharingien de combinatoire, Tome 10 (1984). http://geodesic.mathdoc.fr/item/SLC_1984_10_a3/