Characterisations of Perfect Graphs
Séminaire lotharingien de combinatoire, Tome 10 (1984)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We provide a new characterization of a graph G being perfect (as defined by Berge) in terms of a certain convex set, denoted here by THETA(G), being a polytope or not.
@article{SLC_1984_10_a15,
author = {Martin Gr\"otschel},
title = {Characterisations of {Perfect} {Graphs}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {10},
year = {1984},
url = {http://geodesic.mathdoc.fr/item/SLC_1984_10_a15/}
}
Martin Grötschel. Characterisations of Perfect Graphs. Séminaire lotharingien de combinatoire, Tome 10 (1984). http://geodesic.mathdoc.fr/item/SLC_1984_10_a15/