The Number of Matrices Over a Finite Field With Prescribed Eigenspaces
Séminaire lotharingien de combinatoire, Tome 10 (1984) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

In this article, we are concerned with the following counting problem: Let π be an arbitrary partial partition of Fm. What is the number of m×m-matrices g with entries in F such that π is just the set of eigenspaces of g ?
@article{SLC_1984_10_a14,
     author = {Arne D\"ur},
     title = {The {Number} of {Matrices} {Over} a {Finite} {Field} {With} {Prescribed} {Eigenspaces}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {1984},
     volume = {10},
     url = {http://geodesic.mathdoc.fr/item/SLC_1984_10_a14/}
}
TY  - JOUR
AU  - Arne Dür
TI  - The Number of Matrices Over a Finite Field With Prescribed Eigenspaces
JO  - Séminaire lotharingien de combinatoire
PY  - 1984
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SLC_1984_10_a14/
ID  - SLC_1984_10_a14
ER  - 
%0 Journal Article
%A Arne Dür
%T The Number of Matrices Over a Finite Field With Prescribed Eigenspaces
%J Séminaire lotharingien de combinatoire
%D 1984
%V 10
%U http://geodesic.mathdoc.fr/item/SLC_1984_10_a14/
%F SLC_1984_10_a14
Arne Dür. The Number of Matrices Over a Finite Field With Prescribed Eigenspaces. Séminaire lotharingien de combinatoire, Tome 10 (1984). http://geodesic.mathdoc.fr/item/SLC_1984_10_a14/