Counting Stable Sets in Trees
Séminaire lotharingien de combinatoire, Tome 10 (1984)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Cook [1] has shown that the problem of generating all the stable sets of a given graph is NP complete while several authors have shown that it is possible to generate all the maximal stable sets of G in polynomial-time. In [3] this is done in O(n = number of vertices, m = number of edges, μ = number of maximal stable sets). In this paper we shall
- prove that the problem of counting all stable sets in a tree is no harder than listing all maxima! stable sets in a tree
- calculate the upper bound on the number of maxima) stable sets in a tree of n vertices.
@article{SLC_1984_10_a11,
author = {Daniel I. A. Cohen},
title = {Counting {Stable} {Sets} in {Trees}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {10},
year = {1984},
url = {http://geodesic.mathdoc.fr/item/SLC_1984_10_a11/}
}
Daniel I. A. Cohen. Counting Stable Sets in Trees. Séminaire lotharingien de combinatoire, Tome 10 (1984). http://geodesic.mathdoc.fr/item/SLC_1984_10_a11/