Über symmetrische Polynome
Séminaire lotharingien de combinatoire, Tome 08 (1983)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Let R be a commutative ring with a unit element and R[x(1),...,x(n)] be the polynomial ring in the variables x(1),...,x(n) with coefficients in R. Denote by S the subring of all symmetric polynomials in R[x(1),...,x(n)] and let E(n) be the set of all (n-1)-vectors e=(e(1),...,e(n-1)) such that each e(i) is between 0 and i. Each f in R[x(1),...,x(n)] can be expressed as a sum of monomials X(e) in x(2),...,x(n) whose powers belong to E(n) and whose coefficients S(e) belong to S. The purpose of this paper is to derive an algorithm that calculates the elements S(e) for each f.
The following versions are available:
@article{SLC_1983_08_a7,
author = {Heinz L\"uneburg},
title = {\"Uber symmetrische {Polynome}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {08},
year = {1983},
url = {http://geodesic.mathdoc.fr/item/SLC_1983_08_a7/}
}
Heinz Lüneburg. Über symmetrische Polynome. Séminaire lotharingien de combinatoire, Tome 08 (1983). http://geodesic.mathdoc.fr/item/SLC_1983_08_a7/