A priori error bounds for parabolic interface problems with measure data
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 3, pp. 313-330 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article studies a priori error analysis for linear parabolic interface problems with measure data in time in a bounded convex polygonal domain in $\mathbb{R}^2$. Both the spatially discrete and the fully discrete approximations are analyzed. We have used the standard continuous fitted finite element discretization for the space while, the backward Euler approximation is used for the time discretization. Due to the low regularity of the data of the problem, the solution possesses very low regularity in the entire domain. A priori error bounds in the $L^2(L^2(\Omega))$-norm for both the spatially discrete and the fully discrete finite element approximations are derived under minimal regularity with the help of the $L^2$-projection operator and the duality argument. Numerical experiments are performed to underline the theoretical findings. The interfaces are assumed to be smooth for our purpose.
@article{SJVM_2023_26_3_a6,
     author = {J. Sen Gupta},
     title = {A priori error bounds for parabolic interface problems with measure data},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {313--330},
     year = {2023},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a6/}
}
TY  - JOUR
AU  - J. Sen Gupta
TI  - A priori error bounds for parabolic interface problems with measure data
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2023
SP  - 313
EP  - 330
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a6/
LA  - ru
ID  - SJVM_2023_26_3_a6
ER  - 
%0 Journal Article
%A J. Sen Gupta
%T A priori error bounds for parabolic interface problems with measure data
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2023
%P 313-330
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a6/
%G ru
%F SJVM_2023_26_3_a6
J. Sen Gupta. A priori error bounds for parabolic interface problems with measure data. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 3, pp. 313-330. http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a6/

[1] Adams R.A., Fournier J.J.F., Sobolev Spaces, Pure Appl. Math., 140, 2nd ed., Elsevier, Amsterdam, 2003 | MR

[2] Araya R., Behrens E., Rodríguez R., “A posteriori error estimates for elliptic problems with Dirac delta source terms”, Numer. Math., 105 (2006), 193–216 | DOI | MR | Zbl

[3] Babuška I., “Error-bounds for finite element method”, Numer. Math., 16 (1971), 322–333 | DOI | MR | Zbl

[4] Bernardi C., Verfürth R., “Adaptive finite element methods for elliptic equations with non-smooth coefficients”, Numer. Math., 85 (2000), 579–608 | DOI | MR | Zbl

[5] Boccardo L., Gallouët T., “Non-linear elliptic and parabolic equations involving measure data”, J. Funct. Anal., 87 (1989), 149–169 | DOI | MR | Zbl

[6] Casas E., “L2 estimates for the finite element method for the Dirichlet problem with singular data”, Numer. Math., 47 (1985), 627–632 | DOI | MR | Zbl

[7] Casas E., “Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations”, SIAM J. Control Optim., 35:4 (1997), 1297–1327 | DOI | MR | Zbl

[8] Chen Z., Zou J., “Finite element methods and their convergence for elliptic and parabolic interface problems”, Numer. Math., 79 (1998), 175–202 | DOI | MR | Zbl

[9] Chrysafinos K., Hou L.S., “Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions”, SIAM J. Numer. Anal., 40 (2002), 282–306 | DOI | MR | Zbl

[10] Ciarlet P.G., The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, Classics in Applied Mathematics, 40, SIAM, Philadelphia, 2002 | MR

[11] Droniou J., Raymond J.-P., “Optimal pointwise control of semilinear parabolic equations”, Nonlinear Anal., 39:2 (2000), 135–156 | DOI | MR | Zbl

[12] Evans L.C., Partial Differential Equations, Graduate Studies in Mathematics, 19, 2nd ed., AMS, Providence, RI, 2010 | DOI | MR | Zbl

[13] Gong W., “Error estimates for finite element approximations of parabolic equations with measure data”, Math. Comp., 82 (2013), 69–98 | DOI | MR | Zbl

[14] Gupta J.S., Sinha R.K., Reddy G.M.M., Jain J., “A posteriori error analysis of two-step backward differentiation formula finite element approximation for parabolic interface problems”, J. Sci. Comput., 69 (2016), 406–429 | DOI | MR | Zbl

[15] Hecht F., “New development in freefem++”, J. Numer. Math., 20 (2012), 251–265 | DOI | MR | Zbl

[16] Huang J., Zou J., “Some new a priori estimates for second-order elliptic and parabolic interface problems”, J. Differential Equations, 184 (2002), 570–586 | DOI | MR | Zbl

[17] Ladyženskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and Quasi-linear Equations of Parabolic Type, Translations of Mathematical, 23, AMS, Providence, RI, 1968 | MR | Zbl

[18] Lions J.L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications, v. I, Grundlehren der mathematischen Wissenschaften, 181, Springer-Verlag, 1972 | MR | Zbl

[19] Martínez A., Rodríguez C., Vázquez-Méndez M.E., “Theoretical and numerical analysis of an optimal control problem related to wastewater treatment”, SIAM J. Control Optim., 38 (2000), 1534–1553 | DOI | MR | Zbl

[20] Meidner D., Rannacher R., Vexler B., “A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time”, SIAM J. Control Optim., 49 (2011), 1961–1997 | DOI | MR | Zbl

[21] Ramos A. M., Glowinski R., Periaux J., “Pointwise control of the Burgers equation and related Nash equilibrium problems: computational approach”, J. Optim. Theory Appl., 112 (2002), 499–516 | DOI | MR | Zbl

[22] Rannacher R., Scott R., “Some optimal error estimates for piecewise linear finite element approximations”, Math. Comp., 38 (1982), 437–445 | DOI | MR | Zbl

[23] Scott R., “Finite element convergence for singular data”, Numer. Math., 21 (1973), 317–327 | DOI | MR | Zbl

[24] Sinha R.K., Deka B., “Optimal error estimates for linear parabolic problems with discontinuous coefficients”, SIAM J. Numer. Anal., 43 (2005), 733–749 | DOI | MR | Zbl

[25] Thomée V., Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, 25, 2nd ed., Springer, Berlin, 2006 | MR