@article{SJVM_2023_26_3_a5,
author = {M. G. Mahcene and A. Khellaf and S. Lemita and M. Z. Aissaoui},
title = {A refinement sum-technique in an iterative scheme adapted for a linear system of integral equations to approach a {Fredholm} integral equation's solution},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {301--312},
year = {2023},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a5/}
}
TY - JOUR AU - M. G. Mahcene AU - A. Khellaf AU - S. Lemita AU - M. Z. Aissaoui TI - A refinement sum-technique in an iterative scheme adapted for a linear system of integral equations to approach a Fredholm integral equation's solution JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2023 SP - 301 EP - 312 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a5/ LA - ru ID - SJVM_2023_26_3_a5 ER -
%0 Journal Article %A M. G. Mahcene %A A. Khellaf %A S. Lemita %A M. Z. Aissaoui %T A refinement sum-technique in an iterative scheme adapted for a linear system of integral equations to approach a Fredholm integral equation's solution %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2023 %P 301-312 %V 26 %N 3 %U http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a5/ %G ru %F SJVM_2023_26_3_a5
M. G. Mahcene; A. Khellaf; S. Lemita; M. Z. Aissaoui. A refinement sum-technique in an iterative scheme adapted for a linear system of integral equations to approach a Fredholm integral equation's solution. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 3, pp. 301-312. http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a5/
[1] Ahues M., D'Almeida F., Largillier A., Titaud O., Vasconcelos P., “An $L^1$ refined projection approximate solution of the radiation transfer equation in stellar atmospheres”, J. Compt. Appli. Math., 140 (2002), 13–26 | DOI | MR | Zbl
[2] Atkinson K.E., The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, New York, 1997 | MR | Zbl
[3] Atkinson K.E., “A personal perspective on the history of the numerical analysis of Fredholm integral equations of the second kind”, The Birth of Numerical Analysis, 2009, 53–72 | DOI | MR
[4] Atkinson K.E., Han W., Theoretical Numerical Analysis: A Functional Analysis Framework, Texts in Applied Mathematics, 39, 3rd ed., 2009 | MR | Zbl
[5] D'Almeida F., Titaud O., Vasconcelos P., “A numerical study of iterative refinement schemes for weakly singular integral equations”, App. Math. Lett., 18 (2005), 571–576 | DOI | MR | Zbl
[6] Lemita S., Guebbai H., “New process to approach linear Fredholm integral equation defined on large interval”, Asian-European J. Math., 12:01 (2017) | DOI | MR
[7] Lemita S., Guebbai H., and Aissaoui M.Z., “Generalized Jacobi method for linear bounded operators system”, Comp. Appl. Math., 37 (2018), 3967–3980 | DOI | MR | Zbl
[8] Lemita S., Guebbai H., and Khellaf A., “New version of Gauss Seidel iterative method for operators system to approach Fredholm integral equation”, Proc. 8th Intern. Conf. on Modeling Simulation and Applied Optimization (ICMSAO), IEEE, 2019 | DOI
[9] Pastore P., “The numerical treatment of Love's integral equation having very small parameter”, J. Compt. Appl. Math., 236 (2011), 1267–1281 | DOI | MR | Zbl
[10] Quarteroni A., Sacco R., Saleri F., Numerical Mathematics, Texts in Applied Mathematics, 37, 2000 | MR | Zbl
[11] Titaud O., Analyse Et résolution Numérique de Léquation de Transfert. Application au Problème des Atmosphères Stellaires, Ph.D. thesis, Université Jean Monnet-Saint-Etienne, 2001
[12] Saad Y., Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003 | MR | Zbl