Study of superexponential growth of the mean partile flux by Monte Carlo method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 3, pp. 277-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A comparative analysis of two algorithms for estimation of weighted mean particle flux - «by particles» and «by collisions» - is made on the basis of test problem solving for a single-speed particle propagation process with scattering and multiplication in a random medium. It is shown that the first algorithm is preferable for a simple estimation of the mean flux and the second one, for estimation of the parameters of a possible superexponential flux growth. Two models of the random medium are considered: a chaotic «Voronoi mosaic» and «a spherically layered mosaic». For a fixed mean correlation radius, the superexponential growth has been stronger for the layered mosaic.
@article{SJVM_2023_26_3_a3,
     author = {G. Z. Lotova and G. A. Michailov},
     title = {Study of superexponential growth of the mean partile flux by {Monte} {Carlo} method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {277--285},
     year = {2023},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a3/}
}
TY  - JOUR
AU  - G. Z. Lotova
AU  - G. A. Michailov
TI  - Study of superexponential growth of the mean partile flux by Monte Carlo method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2023
SP  - 277
EP  - 285
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a3/
LA  - ru
ID  - SJVM_2023_26_3_a3
ER  - 
%0 Journal Article
%A G. Z. Lotova
%A G. A. Michailov
%T Study of superexponential growth of the mean partile flux by Monte Carlo method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2023
%P 277-285
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a3/
%G ru
%F SJVM_2023_26_3_a3
G. Z. Lotova; G. A. Michailov. Study of superexponential growth of the mean partile flux by Monte Carlo method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 3, pp. 277-285. http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a3/

[1] Devison B., Teoriya perenosa neitronov, Atomizdat, M., 1960

[2] Marchuk G.I., Mikhailov G.A., Nazaraliev M.A. i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | MR

[3] Mikhailov G.A., Lotova G.Z., “Algoritmy metoda Monte-Karlo dlya issledovaniya vremennoi asimptotiki potoka chastits s razmnozheniem v sluchainoi srede”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 490:1 (2020), 47–50 | DOI

[4] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integraly i ryady, Nauka, M., 1981 | MR

[5] Smelov V.V., Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978

[6] Ambos A.Yu., Mikhailov G.A., “Solution of radiative transfer theory problems for «realistic» models of random media using the Monte Carlo method”, Rus. J. Num. Anal. Math. Model, 31:3 (2016), 1–10 | MR

[7] Gilbert E.N., “Random subdivisions of space into crystals”, Ann. Math. Statist., 33 (1962), 958–972 | DOI | MR | Zbl

[8] Serra J., Image Analysis and Mathematical Morphology, Academic press, London, 1982 | MR | Zbl

[9] Zuev V.E., Titov G.A., “Optika atmosfery i klimat”, Sovremennye problemy atmosfernoi optiki, 9, Izd-vo «Spektr» IOA SO RAN, Tomsk, 1996

[10] Romanov Yu.A., “Tochnye resheniya odnoskorostnogo kineticheskogo uravneniya i ikh ispolzovanie dlya rascheta diffuzionnykh zadach (usovershenstvovannyi diffuzionnyi metod)”, Issledovanie kriticheskikh parametrov reaktornykh sistem, Gosatomizdat, M., 1960, 3–26

[11] Medvedev Il.N., Mikhailov G.A., “New correlative randomized algorithms for statistical modeling of radiation transfer in stochastic medium”, Rus. J. Num. Anal. Math. Model., 34:1 (2021), 43–55 | DOI | MR