@article{SJVM_2023_26_3_a3,
author = {G. Z. Lotova and G. A. Michailov},
title = {Study of superexponential growth of the mean partile flux by {Monte} {Carlo} method},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {277--285},
year = {2023},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a3/}
}
TY - JOUR AU - G. Z. Lotova AU - G. A. Michailov TI - Study of superexponential growth of the mean partile flux by Monte Carlo method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2023 SP - 277 EP - 285 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a3/ LA - ru ID - SJVM_2023_26_3_a3 ER -
G. Z. Lotova; G. A. Michailov. Study of superexponential growth of the mean partile flux by Monte Carlo method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 3, pp. 277-285. http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a3/
[1] Devison B., Teoriya perenosa neitronov, Atomizdat, M., 1960
[2] Marchuk G.I., Mikhailov G.A., Nazaraliev M.A. i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | MR
[3] Mikhailov G.A., Lotova G.Z., “Algoritmy metoda Monte-Karlo dlya issledovaniya vremennoi asimptotiki potoka chastits s razmnozheniem v sluchainoi srede”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 490:1 (2020), 47–50 | DOI
[4] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integraly i ryady, Nauka, M., 1981 | MR
[5] Smelov V.V., Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978
[6] Ambos A.Yu., Mikhailov G.A., “Solution of radiative transfer theory problems for «realistic» models of random media using the Monte Carlo method”, Rus. J. Num. Anal. Math. Model, 31:3 (2016), 1–10 | MR
[7] Gilbert E.N., “Random subdivisions of space into crystals”, Ann. Math. Statist., 33 (1962), 958–972 | DOI | MR | Zbl
[8] Serra J., Image Analysis and Mathematical Morphology, Academic press, London, 1982 | MR | Zbl
[9] Zuev V.E., Titov G.A., “Optika atmosfery i klimat”, Sovremennye problemy atmosfernoi optiki, 9, Izd-vo «Spektr» IOA SO RAN, Tomsk, 1996
[10] Romanov Yu.A., “Tochnye resheniya odnoskorostnogo kineticheskogo uravneniya i ikh ispolzovanie dlya rascheta diffuzionnykh zadach (usovershenstvovannyi diffuzionnyi metod)”, Issledovanie kriticheskikh parametrov reaktornykh sistem, Gosatomizdat, M., 1960, 3–26
[11] Medvedev Il.N., Mikhailov G.A., “New correlative randomized algorithms for statistical modeling of radiation transfer in stochastic medium”, Rus. J. Num. Anal. Math. Model., 34:1 (2021), 43–55 | DOI | MR