LBM on non-uniform grids without interpolation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 3, pp. 235-252 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The lattice Boltzmann method (LBM) is a numerical scheme for solving fluid dynamics problems. One of the important and actively developing areas of LBM is correct construction of the scheme on non-uniform spatial grids. With non-uniform grids the total number of calculations can be significantly reduced. However, at the moment the construction of an LBM scheme near a boundary of grids with different spatial steps inevitably requires data interpolation, which can reduce the LBM approximation order and lead to violation of conservation laws. In this work, for the first time, we have developed and tested a method for constructing an athermal node-based LBM on non-uniform grids without interpolation, with the same time step for grids of different scales. The method is based on a two-stage transformation of populations corresponding to different on-grid stencils.
@article{SJVM_2023_26_3_a0,
     author = {A. V. Berezin and A. V. Ivanov and A. Yu. Perepelkina},
     title = {LBM on non-uniform grids without interpolation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {235--252},
     year = {2023},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a0/}
}
TY  - JOUR
AU  - A. V. Berezin
AU  - A. V. Ivanov
AU  - A. Yu. Perepelkina
TI  - LBM on non-uniform grids without interpolation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2023
SP  - 235
EP  - 252
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a0/
LA  - ru
ID  - SJVM_2023_26_3_a0
ER  - 
%0 Journal Article
%A A. V. Berezin
%A A. V. Ivanov
%A A. Yu. Perepelkina
%T LBM on non-uniform grids without interpolation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2023
%P 235-252
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a0/
%G ru
%F SJVM_2023_26_3_a0
A. V. Berezin; A. V. Ivanov; A. Yu. Perepelkina. LBM on non-uniform grids without interpolation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 3, pp. 235-252. http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a0/

[1] Krüger T., Kusumaatmaja H., Kuzmin A. et al., The Lattice Boltzmann Method: Principles and Practice, Springer, 2016 | DOI | MR

[2] Kupershtokh A.L., “Modelirovanie techenii s granitsami razdela faz zhidkost-par metodom reshetochnykh uravnenii Boltsmana”, Vestnik NGU. Seriya: Matematika, mekhanika i informatika, 5 (2005), 29–42 | Zbl

[3] Kupershtokh A.L., “Trekhmernoe modelirovanie dvukhfaznykh sistem tipa zhidkost-par metodom reshetochnykh uravnenii Boltsmana na GPU”, Vychislitelnye metody i programmirovanie, 13:1 (2012), 130–138

[4] Yu Chen, Qinjun Kang, Qingdong Cai, Dongxiao Zhang, “Lattice Boltzmann method on quadtree grids”, Phys. Rev. E, 83:2 (2011), 026707 | DOI

[5] Guzik S., Xinfeng Gao, Weisgraber T., Alder B., Colella P., “An Adaptive Mesh Refinement Strategy with Conservative Space-Time Coupling for the Lattice-Boltzmann Method”, Proc. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, 2013 | DOI

[6] Touil H., Ricot D., Lévêque E., “Direct and large-eddy simulation of turbulent flows on composite multi-resolution grids by the lattice Boltzmann method”, J. Comput. Phys., 256 (2014), 220–233 | DOI | MR | Zbl

[7] Dorschner B., Frapolli N., Chikatamarla S.S., Karlin I.V., “Grid refinement for entropic lattice Boltzmann models”, Phys. Rev. E, 94 (2016), 053311 | DOI | MR

[8] Fakhari A., Geier M., Lee Taehun, “A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows”, J. Comput. Phys., 315 (2016), 434–457 | DOI | MR | Zbl

[9] Rohde M., Kandhai D., Derksen J.J., Van den Akker H., “A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes”, Intern. J. Numerical Methods in Fluids, 51:4 (2006), 439–468 | DOI | MR | Zbl

[10] Filippova O., Hänel D., “Grid refinement for lattice-BGK models”, J. Comput. Phys., 147:1 (1998), 219–228 | DOI | Zbl

[11] Filippova O., Hänel D., “A novel lattice BGK approach for low Mach number combustion”, J. Comput. Phys., 158:2 (2000), 139–160 | DOI | MR | Zbl

[12] Chen H., Filippova O., Hoch J. et al., “Grid refinement in lattice Boltzmann methods based on volumetric formulation”, Physica A: Statistical Mechanics and its Applications, 362:1 (2006), 158–167 | DOI

[13] Ye Zhao, Feng Qiu, Zhe Fan, Kaufman A., “Flow simulation with locally-refined LBM”, Proc. of the 2007 symposium on Interactive 3D graphics and games, 2007, 181–188 | DOI | Zbl

[14] Dupuis A., Chopard B., “Theory and applications of an alternative lattice Boltzmann grid refinement algorithm”, Phys. Rev. E, 67 (2003), 066707 | DOI

[15] Geier M., Greiner A., Korvink J.G., “Bubble functions for the lattice Boltzmann method and their application to grid refinement”, The European Physical J. Special Topics, 171:1 (2009), 173–179 | DOI

[16] Dorschner B., B?sch F., Karlin I.V., “Particles on demand for kinetic theory”, Phys. Rev. Let., 121 (2018), 130602 | DOI

[17] Zipunova E., Perepelkina A., Zakirov A., Khilkov S., “Regularization and the Particles-on-Demand method for the solution of the discrete Boltzmann equation”, J. Comput. Science, 53:4 (2021), 101376 | DOI | MR

[18] Bhatnagar P.L., Gross E.P., Krook M., “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems”, Phys. Rev., 94:3 (1954), 511–525 | DOI | Zbl

[19] Kupershtokh A.L., “Uchet deistviya ob'emnykh sil v reshetochnykh uravneniyakh Boltsmana”, Vestnik NGU. Seriya: Matematika, mekhanika i informatika, 4 (2004), 75–96 | Zbl

[20] Zakirov A.V., Korneev B.A., Levchenko V.D., Perepelkina A.Yu., “K voprosu o konservativnosti metoda PonD resheniya diskretnogo uravneniya Boltsmana”, Preprinty IPM im. M.V. Keldysha RAN, 2019, 035

[21] Zipunova E.V., Perepelkina A.Yu., “Razrabotka yavnykh i konservativnykh skhem dlya reshetochnykh uravnenii Boltsmana s adaptivnym perenosom”, Preprinty IPM im. M.V. Keldysha RAN, 2022, 007

[22] Ivanov A., Khilkov S., “Aiwlib library as the instrument for creating numerical modeling applications”, Scientific Visualization, 10:1 (2018), 110–127 | DOI

[23] Sukop M.C., Thorne D.T., Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, Springer, 2006

[24] Lin C.L., Lai Y.G., “Lattice Boltzmann method on composite grids”, Phys. Rev. E, 62:2 (2000), 2219–2225 | DOI | MR

[25] Tolke J., Krafczyk M., “Second order interpolation of the flow field in the lattice Boltzmann method”, Comput. Math. Appl., 58:5 (2009), 898–902 | DOI | MR | Zbl