@article{SJVM_2023_26_3_a0,
author = {A. V. Berezin and A. V. Ivanov and A. Yu. Perepelkina},
title = {LBM on non-uniform grids without interpolation},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {235--252},
year = {2023},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a0/}
}
TY - JOUR AU - A. V. Berezin AU - A. V. Ivanov AU - A. Yu. Perepelkina TI - LBM on non-uniform grids without interpolation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2023 SP - 235 EP - 252 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a0/ LA - ru ID - SJVM_2023_26_3_a0 ER -
A. V. Berezin; A. V. Ivanov; A. Yu. Perepelkina. LBM on non-uniform grids without interpolation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 3, pp. 235-252. http://geodesic.mathdoc.fr/item/SJVM_2023_26_3_a0/
[1] Krüger T., Kusumaatmaja H., Kuzmin A. et al., The Lattice Boltzmann Method: Principles and Practice, Springer, 2016 | DOI | MR
[2] Kupershtokh A.L., “Modelirovanie techenii s granitsami razdela faz zhidkost-par metodom reshetochnykh uravnenii Boltsmana”, Vestnik NGU. Seriya: Matematika, mekhanika i informatika, 5 (2005), 29–42 | Zbl
[3] Kupershtokh A.L., “Trekhmernoe modelirovanie dvukhfaznykh sistem tipa zhidkost-par metodom reshetochnykh uravnenii Boltsmana na GPU”, Vychislitelnye metody i programmirovanie, 13:1 (2012), 130–138
[4] Yu Chen, Qinjun Kang, Qingdong Cai, Dongxiao Zhang, “Lattice Boltzmann method on quadtree grids”, Phys. Rev. E, 83:2 (2011), 026707 | DOI
[5] Guzik S., Xinfeng Gao, Weisgraber T., Alder B., Colella P., “An Adaptive Mesh Refinement Strategy with Conservative Space-Time Coupling for the Lattice-Boltzmann Method”, Proc. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, 2013 | DOI
[6] Touil H., Ricot D., Lévêque E., “Direct and large-eddy simulation of turbulent flows on composite multi-resolution grids by the lattice Boltzmann method”, J. Comput. Phys., 256 (2014), 220–233 | DOI | MR | Zbl
[7] Dorschner B., Frapolli N., Chikatamarla S.S., Karlin I.V., “Grid refinement for entropic lattice Boltzmann models”, Phys. Rev. E, 94 (2016), 053311 | DOI | MR
[8] Fakhari A., Geier M., Lee Taehun, “A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows”, J. Comput. Phys., 315 (2016), 434–457 | DOI | MR | Zbl
[9] Rohde M., Kandhai D., Derksen J.J., Van den Akker H., “A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes”, Intern. J. Numerical Methods in Fluids, 51:4 (2006), 439–468 | DOI | MR | Zbl
[10] Filippova O., Hänel D., “Grid refinement for lattice-BGK models”, J. Comput. Phys., 147:1 (1998), 219–228 | DOI | Zbl
[11] Filippova O., Hänel D., “A novel lattice BGK approach for low Mach number combustion”, J. Comput. Phys., 158:2 (2000), 139–160 | DOI | MR | Zbl
[12] Chen H., Filippova O., Hoch J. et al., “Grid refinement in lattice Boltzmann methods based on volumetric formulation”, Physica A: Statistical Mechanics and its Applications, 362:1 (2006), 158–167 | DOI
[13] Ye Zhao, Feng Qiu, Zhe Fan, Kaufman A., “Flow simulation with locally-refined LBM”, Proc. of the 2007 symposium on Interactive 3D graphics and games, 2007, 181–188 | DOI | Zbl
[14] Dupuis A., Chopard B., “Theory and applications of an alternative lattice Boltzmann grid refinement algorithm”, Phys. Rev. E, 67 (2003), 066707 | DOI
[15] Geier M., Greiner A., Korvink J.G., “Bubble functions for the lattice Boltzmann method and their application to grid refinement”, The European Physical J. Special Topics, 171:1 (2009), 173–179 | DOI
[16] Dorschner B., B?sch F., Karlin I.V., “Particles on demand for kinetic theory”, Phys. Rev. Let., 121 (2018), 130602 | DOI
[17] Zipunova E., Perepelkina A., Zakirov A., Khilkov S., “Regularization and the Particles-on-Demand method for the solution of the discrete Boltzmann equation”, J. Comput. Science, 53:4 (2021), 101376 | DOI | MR
[18] Bhatnagar P.L., Gross E.P., Krook M., “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems”, Phys. Rev., 94:3 (1954), 511–525 | DOI | Zbl
[19] Kupershtokh A.L., “Uchet deistviya ob'emnykh sil v reshetochnykh uravneniyakh Boltsmana”, Vestnik NGU. Seriya: Matematika, mekhanika i informatika, 4 (2004), 75–96 | Zbl
[20] Zakirov A.V., Korneev B.A., Levchenko V.D., Perepelkina A.Yu., “K voprosu o konservativnosti metoda PonD resheniya diskretnogo uravneniya Boltsmana”, Preprinty IPM im. M.V. Keldysha RAN, 2019, 035
[21] Zipunova E.V., Perepelkina A.Yu., “Razrabotka yavnykh i konservativnykh skhem dlya reshetochnykh uravnenii Boltsmana s adaptivnym perenosom”, Preprinty IPM im. M.V. Keldysha RAN, 2022, 007
[22] Ivanov A., Khilkov S., “Aiwlib library as the instrument for creating numerical modeling applications”, Scientific Visualization, 10:1 (2018), 110–127 | DOI
[23] Sukop M.C., Thorne D.T., Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, Springer, 2006
[24] Lin C.L., Lai Y.G., “Lattice Boltzmann method on composite grids”, Phys. Rev. E, 62:2 (2000), 2219–2225 | DOI | MR
[25] Tolke J., Krafczyk M., “Second order interpolation of the flow field in the lattice Boltzmann method”, Comput. Math. Appl., 58:5 (2009), 898–902 | DOI | MR | Zbl