Non-traditional intervals and their use. Which ones really make sense?
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 2, pp. 215-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper discusses the question of why intervals, which are the main object of Interval Analysis, have exactly the form that we know well and habitually use, and not some other. In particular, we investigate why traditional intervals are closed, i.e. contain their endpoints, and also what is wrong with an empty interval. A second question considered in the work is how expedient it is to expand the set of traditional intervals by some other objects. We show that improper (“reversed”) intervals and the arithmetic of such intervals (the Kaucher complete interval arithmetic) are very useful from many different points of view.
@article{SJVM_2023_26_2_a7,
     author = {S. P. Shary},
     title = {Non-traditional intervals and their use. {Which} ones really make sense?},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {215--234},
     year = {2023},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a7/}
}
TY  - JOUR
AU  - S. P. Shary
TI  - Non-traditional intervals and their use. Which ones really make sense?
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2023
SP  - 215
EP  - 234
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a7/
LA  - ru
ID  - SJVM_2023_26_2_a7
ER  - 
%0 Journal Article
%A S. P. Shary
%T Non-traditional intervals and their use. Which ones really make sense?
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2023
%P 215-234
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a7/
%G ru
%F SJVM_2023_26_2_a7
S. P. Shary. Non-traditional intervals and their use. Which ones really make sense?. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 2, pp. 215-234. http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a7/

[1] Sharyi S.P., Konechnomernyi intervalnyi analiz, Izd-vo «XYZ», Novosibirsk, 2022 http://www.nsc.ru/interval/Library/InteBooks/SharyBook.pdf

[2] Afravi M., Akinola K., Ayivor F. et al., “Towards foundations of interval and fuzzy uncertainty”, J. of Uncertain Systems, 12:3 (2018), 164–170

[3] Alefeld G., Herzberger J., Introduction to Interval Computations, Academic Press, New York–London, 1983 | MR | Zbl

[4] Apostolatos N., Kulisch U., “Grundzüge einer Intervallrechnung für Matrizen und einige Anwendungen”, Electron. Rechenanl, 10 (1968), 73–83 | Zbl

[5] Berti S., “The solution of an interval equation”, Mathematica, 11(34):2 (1969), 189–194 | MR | Zbl

[6] Birkhoff G., Lattice Theory, American Mathematical Society, Providence, RI, 1967 | MR | Zbl

[7] Caprani O., Madsen K., Rall L.B., “Integration of interval functions”, SIAM J. on Mathematical Analysis, 12:3 (1981), 321–341 | DOI | MR | Zbl

[8] Collatz L., Functional Analysis and Numerical Mathematics, Academic Press, New York, 1966 | MR

[9] Dieudonné J., Foundations of Modern Analysis, Academic Press, New York–London, 1960 | MR | Zbl

[10] Engelking R., General Topology, Heldermann Verlag, Berlin, 1989 | MR | Zbl

[11] Granas A., Dugundji J., Fixed-Point Theory, Springer, New York, 2003 | MR | Zbl

[12] Goldsztejn A., “Modal intervals revisited. Part 1: A generalized interval natural extension”, Reliable Computing, 16 (2012), 130–183 https://interval.edu/louisiana.edu/reliable-computing-journal/volume-16/reliable-computing-16-pp-130-183.pdf | MR

[13] Goldsztejn A., “Modal intervals revisited. Part 2: A generalized interval mean value extension”, Reliable Computing, 16 (2012), 184–209 https://interval.edu/louisiana.edu/reliable-computing-journal/volume-16/reliable-computing-16-pp-184-209.pdf | MR

[14] Hansen E., Walster G.W., Global Optimization Using Interval Analysis, Marcel Dekker, New York, 2004 | MR | Zbl

[15] Hukuhara M., “Integration des applications measurables dont la valeur est un compact convexe”, Funkcialaj Ekvacioj, 10 (1967), 205–223 | MR | Zbl

[16] IEEE 1788-2015 - IEEE Standard for Interval Arithmetic https://standards.ieee.org/standard/1788-2015.html

[17] Kahan W., A More Complete Interval Arithmetic, Lect. Notes for a summer course (University of Michigan, June 17-21, 1968), University of Toronto, Canada, 1968 https://interval.louisiana.edu/historical-preprints/1968-Kahan-a-more-complete-interval-arithmetic.pdf

[18] Kantorovich L.V., “Some new approaches to computational methods and the handling of observations”, Siberian Mathematical J., 3:5 (1962), 701–709 (in Russian) | MR

[19] Kaucher E., Über Metrische und Algebraische Eigenschaften Einiger Beim Numerischen Rechnen Auftretender Räume, PhD thesis, Universiät Karlsruhe, Karlsruhe, 1973 http://www.nsc.ru/interval/Library/InteDiss/Kaucher-disser-1973.pdf | MR

[20] Kaucher E., “Algebraische erweiterungen der intervallrechnung unter erhaltung ordnungs- und verbandsstrukturen”, Computing Supplementum, v. 1, Grundlagen der Computer-Arithmetic, eds. R. Albrecht, U. Kulisch, Springer, Wien, 1977, 65–79 | DOI | MR

[21] Kaucher E., “Interval analysis in the extended interval space IR”, Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis), Computing Supplementum, 2, Springer, 1980, 33–49 | DOI | MR

[22] Kearfott R.B., Rigorous Global Search: Continuos Problems, Kluwer, Dordrecht, 1996 | MR

[23] Kearfott R.B., Nakao M., Neumaier A. et al., “Standardized notation in interval analysis”, Computational Technologies, 15:1 (2010), 7–13 http://www.ict.nsc.ru/jct/getfile.php?id=1345 | Zbl

[24] Kurosh A.G., Lectures in General Algebra, Pergamon Press, Oxford, 1965 | MR | Zbl

[25] Laveuve S.E., “Definition einer Kahan-Arithmetic und ihre Implementierung”, Interval Mathematics, Lect. Notes in Computer Science, 29, ed. K. Nickel, Springer-Verlag, Berlin, 1975, 236–245 | DOI

[26] Markov S., “On directed interval arithmetic and its applications”, J. of Universal Computer Science, 1:7 (1995), 514–526 | MR | Zbl

[27] Markov S., “An iterative method for algebraic solution to interval equations”, Applied Numerical Mathematics, 30:2-3 (1999), 225–239 | DOI | MR | Zbl

[28] Mayer G., Interval Analysis and Automatic Result Verification, Walter de Gruyter, Berlin, 2017 | MR

[29] Moore R.E., Interval Arithmetic and Automatic Error Analysis in Digital Computing, PhD thesis, Applied Mathematics and Statistics Laboratories Technical Report, 25, Stanford University, Stanford, California, 1962 | MR

[30] Moore R.E., Kearfott R.B., Cloud M.J., Introduction to Interval Analysis, SIAM, Philadelphia, 2009 | MR | Zbl

[31] Neumaier A., Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[32] Neumaier A., Computer Graphics, Linear Interpolation, and Nonstandard Intervals, Universität Wien, Wien, 2009 http://www.mat.univie.ac.at/ñeum/ms/nonstandard.pdf

[33] Nickel K., “Die Auflösbarkeit linearer Kreisscheiben- und Intervall-Gleichungssystemen”, Linear Algebra and its Applications, 44 (1982), 19–40 | DOI | MR | Zbl

[34] Ortega J.M., Rheinboldt W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | MR | Zbl

[35] Ortolf H.-J., “Eine Verallgemeinerung der Intervallarithmetik”, Berichte der Geselschaft für Mathematik und Datenverarbeitung, 11, Bonn, 1969, 1–71 | MR

[36] Polyak B.T., Nazin S.A., “Interval solutions for interval algebraic equations”, Mathematics and Computers in Simulation, 66:2-3 (2004), 207–217 | DOI | MR | Zbl

[37] Popova E.D., “Algebraic solutions to a class of interval equations”, J. of Universal Computer Science, 4:1 (1998), 48–67 | MR | Zbl

[38] Rall L.B., “Integration of interval functions II. The finite case”, SIAM J. on Mathematical Analysis, 13:4 (1982), 690–697 http://www.nsc.ru/interval/Library/Thematic/General/Rall82.pdf | DOI | MR

[39] Ratschek H., Sauer W., “Linear interval equations”, Computing, 28 (1982), 105–115 http://www.nsc.ru/interval/Library/Thematic/ILSystems/LinInEqs.pdf | DOI | MR | Zbl

[40] Reliable Computing mailing list, https://lists.louisiana.edu/mailman/listinfo/reliable_computing

[41] Rudin W., Principles of Mathematical Analysis, 3rd ed., McGraw-Hill Publishing Company, New York, 1976 | MR | Zbl

[42] Sainz M.A., Armengol J., Calm R. et. al., Modal Interval Analysis. New tools for numerical information, Lect. Notes in Computer Science, 2091, Springer, Cham–Heidelberg–New York, 2014 | DOI | MR | Zbl

[43] Shary S.P., “Algebraic approach to the interval linear static identification, tolerance, and control problems, or one more application of Kaucher arithmetic”, Reliable Computing, 2:1 (1996), 3–33 http://www.nsc.ru/interval/shary/Papers/OneMoreKaucher.pdf | DOI | MR | Zbl

[44] Shary S.P., “Algebraic approach in the «outer problem» for interval linear equations”, Reliable Computing, 3:2 (1997), 103–135 | DOI | MR | Zbl

[45] Shary S.P., “A new technique in systems analysis under interval uncertainty and ambiguity”, Reliable Computing, 8:5 (2002), 321–418 http://www-sbras.nsc.ru/interval/Library/Surveys/ANewTech.pdf | DOI | MR | Zbl

[46] Shary S.P., “Numerical computation of formal solutions to interval linear systems of equations”, Numer. Analysis, 2019, arXiv: 1903.10272v1

[47] Shilov G.E., Elementary Real and Complex Analysis, Dover, Mineola, New York, 1996 | MR | Zbl

[48] Sunaga T., “Theory of an interval algebra and its application to numerical analysis”, RAAG Memoirs, 2 (1958), 547–564

[49] Tarski A., “A lattice-theoretical fixpoint theorem and its applications”, Pacific J. Math., 5 (1955), 285–309 | DOI | MR | Zbl

[50] Chiriaev D., Walster B., Interval Arithmetic Specification, 2000 http://www.nsc.ru/interval/Programing/IASpecfn.pdf

[51] Zeidler E., Nonlinear Functional Analysis and its Applications, v. I, Fixed-point theorems, Springer, 1986 | MR | Zbl

[52] Zyuzin V.S., “An interval arithmetic solution of a system of interval algebraic equations of the first order”, Proc. Intern. Symposium on Computer Arithmetic, Scientific Computation and Mathematical Modelling (SCAN-90) (Albena, Bulgaria, September 23-28, 1990), Bulgarian Academy of Sciences, Sofia, 1990, 160–162