Exact calculation of the approximation error of multiple Itô stochastic integrals
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 2, pp. 205-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article, formulas for exact calculation of the approximation error of multiple It? stochastic integrals based on their orthogonal expansion are obtained. As an example, stochastic Itô integrals with multiplicities 2-4 are considered, which are used in the numerical methods for solving stochastic differential equations with orders of strong convergence 1-2.
@article{SJVM_2023_26_2_a6,
     author = {K. A. Rybakov},
     title = {Exact calculation of the approximation error of multiple {It\^o} stochastic integrals},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {205--213},
     year = {2023},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a6/}
}
TY  - JOUR
AU  - K. A. Rybakov
TI  - Exact calculation of the approximation error of multiple Itô stochastic integrals
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2023
SP  - 205
EP  - 213
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a6/
LA  - ru
ID  - SJVM_2023_26_2_a6
ER  - 
%0 Journal Article
%A K. A. Rybakov
%T Exact calculation of the approximation error of multiple Itô stochastic integrals
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2023
%P 205-213
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a6/
%G ru
%F SJVM_2023_26_2_a6
K. A. Rybakov. Exact calculation of the approximation error of multiple Itô stochastic integrals. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 2, pp. 205-213. http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a6/

[1] Kloeden P.E., Platen E., Numerical Solution of Stochastic Differential Equations, Springer, 1999 | MR

[2] Milstein G.N., Tretyakov M.V., Stochastic Numerics for Mathematical Physics, Springer-Verlag, 2004 | MR | Zbl

[3] Averina T.A., Statisticheskoe modelirovanie reshenii stokhasticheskikh differentsialnykh uravnenii i sistem so sluchainoi strukturoi, Izd-vo SO RAN, Novosibirsk, 2019

[4] Kuznetsov D.F., “Mean-square approximation of iterated It? and Stratonovich stochastic integrals: method of generalized multiple Fourier series. Application to numerical integration of It? SDEs and semilinear SPDEs”, Differentsialnye uravneniya i protsessy upravleniya, 2021, no. 4, A.1–A.788 | MR

[5] Rybakov K.A., “Ortogonalnoe razlozhenie kratnykh stokhasticheskikh integralov Ito”, Differentsialnye uravneniya i protsessy upravleniya, 2021, no. 3, 109–140 | Zbl

[6] Rybakov K.A., “Ortogonalnoe razlozhenie kratnykh stokhasticheskikh integralov Stratonovicha”, Differentsialnye uravneniya i protsessy upravleniya, 2021, no. 4, 81–115 | Zbl

[7] Kuznetsov D.F., “Sravnitelnyi analiz effektivnosti primeneniya polinomov Lezhandra i trigonometricheskikh funktsii k chislennomu integrirovaniyu stokhasticheskikh differentsialnykh uravnenii Ito”, Zhurn. vychisl. matem. i mat. fiziki, 59:8 (2019), 1299–1313 | DOI

[8] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[9] Gikhman I.I., Skorokhod A.V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[10] Dobrushin R.L., Minlos R.A., “Polinomy ot lineinykh sluchainykh funktsii”, Uspekhi matematicheskikh nauk, 32:2(194) (1977), 67–122 | MR | Zbl

[11] Rybakov K.A., “Primenenie spektralnoi formy matematicheskogo opisaniya dlya predstavleniya povtornykh stokhasticheskikh integralov”, Differentsialnye uravneniya i protsessy upravleniya, 2019, no. 4, 1–31 | Zbl