Pseudo-commutation classes of complex matrices and their decomplexification
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 2, pp. 199-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The relation between complex matrices $H$ and $A$ given by the equality $HA=\overline{A}H$ is called the pseudo-commutation. The set $S_H$ of all $A$ that pseudo-commute with a nonsingular $n\times n$ matrix $H$ is called the pseudo-commutation class defined by $H$. Every class $S_H$ is a subspace of the space $M_n(\mathbf{C})$ interpreted as a real vector space of dimension $2n^2$. Under the assumption $\mathrm{dim}_{\mathbf{R}}S_H=n^2$, we find a necessary and sufficient condition for the possibility to decomplexify all the matrices in $S_H$ by one and the same similarity transformation.
@article{SJVM_2023_26_2_a5,
     author = {Kh. D. Ikramov},
     title = {Pseudo-commutation classes of complex matrices and their decomplexification},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {199--203},
     year = {2023},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Pseudo-commutation classes of complex matrices and their decomplexification
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2023
SP  - 199
EP  - 203
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a5/
LA  - ru
ID  - SJVM_2023_26_2_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Pseudo-commutation classes of complex matrices and their decomplexification
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2023
%P 199-203
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a5/
%G ru
%F SJVM_2023_26_2_a5
Kh. D. Ikramov. Pseudo-commutation classes of complex matrices and their decomplexification. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 2, pp. 199-203. http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a5/

[1] Horn R.A., Johnson C.R., Matrix Analysis, Second edition, Cambridge University Press, Cambridge, 2013 | MR | Zbl

[2] Lee A., “Centrohermitian and skew-centrohermitian matrices”, Linear Algebra Appl., 29 (1980), 205–210 | DOI | MR | Zbl

[3] Ikramov Kh.D., Zadachnik po lineinoi algebre, Izd-vo Lan, SPb., 2006 | MR

[4] Ikramov Kh.D., “O kompleksnykh matritsakh, unitarno podobnykh veschestvennym matritsam”, Mat. zametki, 87:6 (2010), 840–847 | DOI

[5] Ikramov Kh.D., “Ob effektivnykh algoritmakh dekompleksifikatsii matrits posredstvom unitarnykh podobii i kongruentsii”, Mat. zametki, 92:6 (2012), 856–863 | DOI | Zbl