A dual method for solving the equilibrium problem of a body containing a thin defect
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 2, pp. 183-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An equilibrium problem of a two-dimensional body with a thin defect whose properties are characterized by a fracture parameter is considered. The problem is discretized, and an approximation accuracy theorem is proved. To solve the problem, a dual method based on a modified Lagrange functional is used. In computational experiments, when solving the direct problem, a generalized Newton's method is used with a step satisfying Armijo's condition.
@article{SJVM_2023_26_2_a4,
     author = {A. Zhiltsov and N. N. Maksimova},
     title = {A dual method for solving the equilibrium problem of a body containing a thin defect},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {183--198},
     year = {2023},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a4/}
}
TY  - JOUR
AU  - A. Zhiltsov
AU  - N. N. Maksimova
TI  - A dual method for solving the equilibrium problem of a body containing a thin defect
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2023
SP  - 183
EP  - 198
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a4/
LA  - ru
ID  - SJVM_2023_26_2_a4
ER  - 
%0 Journal Article
%A A. Zhiltsov
%A N. N. Maksimova
%T A dual method for solving the equilibrium problem of a body containing a thin defect
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2023
%P 183-198
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a4/
%G ru
%F SJVM_2023_26_2_a4
A. Zhiltsov; N. N. Maksimova. A dual method for solving the equilibrium problem of a body containing a thin defect. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 2, pp. 183-198. http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a4/

[1] Morozov N.F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984

[2] Khludnev A.M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[3] Khludnev A.M., Popova T.S., “Ob ierarkhii tonkikh vklyuchenii v uprugikh telakh”, Matematicheskie zametki SVFU, 23:1 (2016), 87–107 | Zbl

[4] Golshtein E.G., Tretyakov N.V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989 | MR

[5] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR

[6] Grossman K., Kaplan A.A., Nelineinoe programmirovanie na osnove bezuslovnoi minimizatsii, Nauka, Novosibirsk, 1981 | MR

[7] Marchuk G.I., Agoshkov V.I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[8] Glavachek I., Gaslinger Ya., Nechas I., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986

[9] Vu G., Namm R.V., Sachkov S.A., “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zhurn. vychisl. matem. i mat. fiziki, 46:1 (2006), 26–36 | DOI | MR | Zbl

[10] Vikhtenko E.M., Namm R.V., “Skhema dvoistvennosti dlya resheniya polukoertsitivnoi zadachi Sinorini s treniem”, Zhurn. vychisl. matem. i mat. fiziki, 47:12 (2007), 2023–2036 | DOI | MR

[11] Kushniruk N.N., Namm R.V., “Metod mnozhitelei Lagranzha dlya resheniya polukoertsitivnoi modelnoi zadachi s treniem”, Sib. zhurn. vychisl. matematiki, 12:4 (2009), 409–420 | DOI | Zbl

[12] Vikhtenko E.M., Maksimova N.N., Namm R.V., “Modifitsirovannye funktsionaly Lagranzha dlya resheniya variatsionnykh i kvazivariatsionnykh neravenstv mekhaniki”, Avtomat. i telemekhanika, 2012, no. 4, 3–17 | DOI | MR | Zbl

[13] Vikhtenko E.M., Maksimova N.N., Namm R.V., “Funktsionaly chuvstvitelnosti v variatsionnykh neravenstvakh mekhaniki i ikh prilozhenie k skhemam dvoistvennosti”, Sib. zhurn. vychisl. matematiki, 17:1 (2014), 43–52 | DOI | MR | Zbl

[14] Vikhtenko E.M., Vu G., Namm R.V., “Funktsionaly chuvstvitelnosti v kontaktnykh zadachakh teorii uprugosti”, Zhurn. vychisl. matem. i mat. fiziki, 54:7 (2014), 1218–1228 | DOI | MR | Zbl

[15] Vikhtenko E.M., Vu G., Namm R.V., “Metody resheniya polukoertsitivnykh variatsionnykh neravenstv mekhaniki na osnove modifitsirovannykh funktsionalov Lagranzha”, Dalnevost. matem. zhurn., 14:1 (2014), 6–17 | MR | Zbl

[16] Vikhtenko E.M., Namm R.V., “O metode dvoistvennosti dlya resheniya modelnoi zadachi s treschinoi”, Tr. IMM UrO RAN, 22, no. 1, 2016, 36–43 | MR

[17] Namm R.V., Tsoi G.I., “Modifitsirovannaya skhema dvoistvennosti dlya resheniya uprugoi zadachi s treschinoi”, Sib. zhurn. vychisl. matematiki, 20:1 (2017), 47–58 | DOI | Zbl

[18] Namm R.V., Tsoi G.I., “Reshenie kontaktnoi zadachi teorii uprugosti s zhestkim vklyucheniem”, Zhurn. vychisl. matem. i mat. fiziki, 59:4 (2019), 699–706 | DOI | MR | Zbl

[19] Khludnev A.M., “On modeling elastic bodies with defects”, Sib. E`lektron. Mat. Izv., 15 (2018), 153–166 | MR | Zbl

[20] Rudoy E.M., “Domain decomposition method for crack problems with nonpenetration condition”, Mathem. Modeling and Numer. Analysis, 50:4 (2016), 995–1009 | DOI | MR | Zbl

[21] Zhiltsov A.V., “Sedlovaya tochka funktsionalov Lagranzha v zadache o tele, soderzhaschem tonkii defekt s parametrom”, Informatika i sistemy upravleniya, 2022, no. 3(73), 84–92

[22] Vikhtenko E.M., Namm R.V., “Kharakteristicheskie svoistva modifitsirovannogo funktsionala Lagranzha dlya kontaktnoi zadachi teorii uprugosti s zadannym treniem”, Dalnevost. matem. zhurn., 9:1-2 (2009), 38–47 | MR

[23] Zhiltsov A.V., “Metod mnozhitelei Lagranzha dlya resheniya zadachi ob odnostoronnem kontakte uprugikh tel s ogranichennoi zonoi kontakta”, Matematicheskie zametki SVFU, 23:4 (2016), 99–114