An implicit iteration method for solving linear ill-posed operator equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 2, pp. 115-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, we study a new implicit method to compute the solutions of ill-posed linear operator equations of the first kind under the setting of compact operators. The regularization theory can be used to demonstrate the stability and convergence of this scheme. Furthermore, we obtain convergence results and effective stopping criteria according to Morozov's discrepancy principle. Numerical performances are calculated to show the validity of our implicit method and demonstrate its applicability to deblurring problems.
@article{SJVM_2023_26_2_a0,
     author = {T. Bechouat},
     title = {An implicit iteration method for solving linear ill-posed operator equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {115--134},
     year = {2023},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a0/}
}
TY  - JOUR
AU  - T. Bechouat
TI  - An implicit iteration method for solving linear ill-posed operator equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2023
SP  - 115
EP  - 134
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a0/
LA  - ru
ID  - SJVM_2023_26_2_a0
ER  - 
%0 Journal Article
%A T. Bechouat
%T An implicit iteration method for solving linear ill-posed operator equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2023
%P 115-134
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a0/
%G ru
%F SJVM_2023_26_2_a0
T. Bechouat. An implicit iteration method for solving linear ill-posed operator equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 2, pp. 115-134. http://geodesic.mathdoc.fr/item/SJVM_2023_26_2_a0/

[1] H.W. Engl, C.W. Groetsch, Inverse and Ill-posed Problems, Notes and Reports in Mathematics in Science and Engineering, 4, Academic Press, 2014 | MR

[2] Kabanikhin S.I., Inverse and Ill-posed Problems. Theory and Applications, Inverse and Ill-posed Problems Series, 55, De Gruyter, Berlin–Boston, 2011 | DOI | MR

[3] Nair M.T., Linear Operator Equations: Approximation and Regularization, World Scientific, Singapore, 2009 | MR | Zbl

[4] Ceng L.-C., Ansari Q.H., Wen C.-F., “Multi-step implicit iterative methods with regularization for minimization problems and fixed point problems”, J. of Inequalities and Applications, 1 (2013), 1–26 | MR

[5] Laurent G., “Iterative thickness regularization of stratigraphic layers in discrete implicit modeling”, Mathematical Geosciences, 48:7 (2016), 811–833 | DOI | MR

[6] Shi B., Pang Z.-F., Yang Y.-F., “A projection method based on the splitting Bregman iteration for the image denoising”, J. of Applied Mathematics and Computing, 39:1 (2012), 533–550 | DOI | MR | Zbl

[7] Van Hieu D., Anh P.K., Muu L.D., Strodiot J.J., “Iterative regularization methods with new stepsize rules for solving variational inclusions”, J. of Applied Mathematics and Computing, 68:1 (2022), 571–599 | DOI | MR | Zbl

[8] Xiao C., Deng Y., “A new Newton-Landweber iteration for nonlinear inverse problems”, J. of Applied Mathematics and Computing, 36:1 (2011), 489–505 | DOI | MR | Zbl

[9] Han G., Qu G., Jiang M., “Relaxation strategy for the Landweber method”, Signal Processing, 125 (2016), 87–96 | DOI

[10] Yang F., Ren Y.-P., Li X.-X., Li D.-G., “Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation”, Boundary Value Problems, 2017, 1–19 | MR

[11] Konstantinova Y., Liskovets O., “The gradient method with variable step for equations of the 1st kind”, Vestn. Belorussk. un-ta. Ser. fiz., matem., 2 (1974), 45–49 | MR | Zbl

[12] Matysik O., Van Hulle M.M., “Simple-iteration method with alternating step size for solving operator equations in Hilbert space”, J. of Computational and Applied Mathematics, 300 (2016), 290–299 | DOI | MR | Zbl

[13] Neubauer A., “On Nesterov acceleration for Landweber iteration of linear ill-posed problems”, J. of Inverse and Ill-posed Problems, 25:3 (2017), 38–390 | DOI | MR

[14] Xiong X., Xue X., Qian Z., “A modified iterative regularization method for ill-posed problems”, Appl. Numerical Mathematics, 122 (2017), 108–128 | DOI | MR | Zbl

[15] Hanke M., Groetsch C.W., “Nonstationary iterated Tikhonov regularization”, J. of Optimization Theory and Applications, 98:1 (1998), 37–53 | DOI | MR | Zbl

[16] Huang G., Reichel L., Yin F., “Projected nonstationary iterated Tikhonov regularization”, BIT Numerical Mathematics, 56:2 (2016), 467–487 | DOI | MR | Zbl

[17] Jin Q., Zhong M., “Nonstationary iterated Tikhonov regularization in Banach spaces with uniformly convex penalty terms”, Numerische Mathematik, 127:3 (2014), 485–513 | DOI | MR | Zbl

[18] Vasin V.V., Ageev A.L., Ill-Posed Problems with a Priori Information, De Gruyter, Berlin–Boston, 2013 | MR

[19] De Hoog F., “Review of Fredholm equations of the first kind”, The Application and Numerical Solution of Integral Equations, eds. R.S. Anderssen, F.R. de Hoog and M.A. Lukas, 1980, 119–134 | DOI | MR | Zbl

[20] Hansen P.C., “Regularization tools version 4.0 for Matlab 7.3.”, Numerical Algorithms, 46:2 (2007), 189–194 | DOI | MR | Zbl

[21] Dolan E.D., Moré J.J., “Benchmarking optimization software with performance profiles”, Mathematical Programming, 91:2 (2002), 201–213 | DOI | MR | Zbl

[22] Gould N., Scott J., “A note on performance profiles for benchmarking software”, ACM Transactions on Mathematical Software (TOMS), 43:2 (2016), 1–5 | DOI | MR

[23] Rojas-Labanda S., Stolpe M., “Benchmarking optimization solvers for structural topology optimization”, Structural and Multidisciplinary Optimization, 52:3 (2015), 527–547 | DOI | MR

[24] Hansen P.C., Nagy J.G., O'Leary D.P., “Deblurring images: matrices, spectra, and filtering”, J. of Electronic Imaging, 2006, 29938164 | MR