Formulas for numerical differentiation of functions with large gradients
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical differentiation of functions with large gradients is investigated. It is assumed that a function contains a component known up to a factor and responsible for the large gradients of the function. Application of classical formulas for calculating derivatives to such functions may lead to significant errors. Special-purpose formulas are studied for numerical differentiation on a uniform grid which are exact for a boundary layer component. Conditions are formulated under which an error estimate of a difference formula for a derivative does not depend on the gradients of the boundary layer component. In the case of an exponential boundary layer, when calculating a derivative of an arbitrarily given order error estimates that are uniform with respect to a small parameter are obtained. The results of numerical experiments are presented.
@article{SJVM_2023_26_1_a1,
     author = {A. I. Zadorin},
     title = {Formulas for numerical differentiation of functions with large gradients},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a1/}
}
TY  - JOUR
AU  - A. I. Zadorin
TI  - Formulas for numerical differentiation of functions with large gradients
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2023
SP  - 17
EP  - 26
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a1/
LA  - ru
ID  - SJVM_2023_26_1_a1
ER  - 
%0 Journal Article
%A A. I. Zadorin
%T Formulas for numerical differentiation of functions with large gradients
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2023
%P 17-26
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a1/
%G ru
%F SJVM_2023_26_1_a1
A. I. Zadorin. Formulas for numerical differentiation of functions with large gradients. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a1/

[1] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M., Chislennye metody, Nauka, M., 1987

[2] Zadorin A.I., “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sib. zhurn. vychisl. Matematiki, 10:3 (2007), 267–275

[3] Zadorin A.I., Zadorin N.A., “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Siberian Electronic Mathematical Reports, 9 (2012), 445–455

[4] Kellog R.B., Tsan A., “Analysis of Some Difference Approximations for a Singular Perturbation Problem without Turning Points”, Math. Comput., 32 (1978), 1025–1039

[5] Zadorin A.I., Zadorin N.A., “Nepolinomialnaya interpolyatsiya funktsii s bolshimi gradientami i ee primenenie”, Zhurn. vychisl. matem. i mat. fiziki, 61:2 (2021), 179–188

[6] Il'in V.P., Zadorin A.I., “Adaptive formulas of numerical differentiation of functions with large gradients”, Journal of Physics: Conference Series, 1260:4 (2019) | DOI

[7] Zadorin A.I., Ilin V.P., “Adaptivnye formuly chislennogo differentsirovaniya pri nalichii pogranichnogo sloya”, Tr. Mezhdunar. konferentsii. Aktualnye problemy vychislitelnoi i prikladnoi matematiki, IVMiMG SO RAN, Novosibirsk, 2019, 144–150 | DOI

[8] Zadorin A.I., “Analiz formul chislennogo differentsirovaniya na setke Shishkina pri nalichii pogranichnogo sloya”, Sib. zhurn. vychisl. matematiki, 21:3 (2018), 243–254

[9] Shishkin G.I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992

[10] Kopteva N.V., Stynes M., “Approximation of derivatives in a convection-diffusion two-point boundary value problem”, Applied Numerical Mathematics, 39 (2001), 47–60 | DOI

[11] Shishkin G.I., “Approximations of solutions and derivatives for a singularly perturbed elliptic convection-diffusion equations”, Comput. Math. Math. Phys., 43:5 (2003), 641–657

[12] Zadorin A.I., “Interpolation formulas for functions with large gradients in the boundary layer and their application”, Modeling and Analysis of Information Systems, 23:3 (2016), 377–384