Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2023_26_1_a1, author = {A. I. Zadorin}, title = {Formulas for numerical differentiation of functions with large gradients}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {17--26}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a1/} }
TY - JOUR AU - A. I. Zadorin TI - Formulas for numerical differentiation of functions with large gradients JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2023 SP - 17 EP - 26 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a1/ LA - ru ID - SJVM_2023_26_1_a1 ER -
A. I. Zadorin. Formulas for numerical differentiation of functions with large gradients. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a1/
[1] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M., Chislennye metody, Nauka, M., 1987
[2] Zadorin A.I., “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sib. zhurn. vychisl. Matematiki, 10:3 (2007), 267–275
[3] Zadorin A.I., Zadorin N.A., “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Siberian Electronic Mathematical Reports, 9 (2012), 445–455
[4] Kellog R.B., Tsan A., “Analysis of Some Difference Approximations for a Singular Perturbation Problem without Turning Points”, Math. Comput., 32 (1978), 1025–1039
[5] Zadorin A.I., Zadorin N.A., “Nepolinomialnaya interpolyatsiya funktsii s bolshimi gradientami i ee primenenie”, Zhurn. vychisl. matem. i mat. fiziki, 61:2 (2021), 179–188
[6] Il'in V.P., Zadorin A.I., “Adaptive formulas of numerical differentiation of functions with large gradients”, Journal of Physics: Conference Series, 1260:4 (2019) | DOI
[7] Zadorin A.I., Ilin V.P., “Adaptivnye formuly chislennogo differentsirovaniya pri nalichii pogranichnogo sloya”, Tr. Mezhdunar. konferentsii. Aktualnye problemy vychislitelnoi i prikladnoi matematiki, IVMiMG SO RAN, Novosibirsk, 2019, 144–150 | DOI
[8] Zadorin A.I., “Analiz formul chislennogo differentsirovaniya na setke Shishkina pri nalichii pogranichnogo sloya”, Sib. zhurn. vychisl. matematiki, 21:3 (2018), 243–254
[9] Shishkin G.I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992
[10] Kopteva N.V., Stynes M., “Approximation of derivatives in a convection-diffusion two-point boundary value problem”, Applied Numerical Mathematics, 39 (2001), 47–60 | DOI
[11] Shishkin G.I., “Approximations of solutions and derivatives for a singularly perturbed elliptic convection-diffusion equations”, Comput. Math. Math. Phys., 43:5 (2003), 641–657
[12] Zadorin A.I., “Interpolation formulas for functions with large gradients in the boundary layer and their application”, Modeling and Analysis of Information Systems, 23:3 (2016), 377–384