Formulas for numerical differentiation of functions with large gradients
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 17-26
Voir la notice de l'article provenant de la source Math-Net.Ru
Numerical differentiation of functions with large gradients is investigated. It is assumed that a function contains a component known up to a factor and responsible for the large gradients of the function. Application of classical formulas for calculating derivatives to such functions may lead to significant errors. Special-purpose formulas are studied for numerical differentiation on a uniform grid which are exact for a boundary layer component. Conditions are formulated under which an error estimate of a difference formula for a derivative does not depend on the gradients of the boundary layer component. In the case of an exponential boundary layer, when calculating a derivative of an arbitrarily given order error estimates that are uniform with respect to a small parameter are obtained. The results of numerical experiments are presented.
@article{SJVM_2023_26_1_a1,
author = {A. I. Zadorin},
title = {Formulas for numerical differentiation of functions with large gradients},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {17--26},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a1/}
}
TY - JOUR AU - A. I. Zadorin TI - Formulas for numerical differentiation of functions with large gradients JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2023 SP - 17 EP - 26 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a1/ LA - ru ID - SJVM_2023_26_1_a1 ER -
A. I. Zadorin. Formulas for numerical differentiation of functions with large gradients. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 26 (2023) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/SJVM_2023_26_1_a1/