Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2022_25_4_a8, author = {M. Yu. Kokurin and V. V. Klyuchev}, title = {Uniqueness conditions and numerical approximation of the solution to {M.M.~Lavrentiev's} integral equation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {441--458}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a8/} }
TY - JOUR AU - M. Yu. Kokurin AU - V. V. Klyuchev TI - Uniqueness conditions and numerical approximation of the solution to M.M.~Lavrentiev's integral equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 441 EP - 458 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a8/ LA - ru ID - SJVM_2022_25_4_a8 ER -
%0 Journal Article %A M. Yu. Kokurin %A V. V. Klyuchev %T Uniqueness conditions and numerical approximation of the solution to M.M.~Lavrentiev's integral equation %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2022 %P 441-458 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a8/ %G ru %F SJVM_2022_25_4_a8
M. Yu. Kokurin; V. V. Klyuchev. Uniqueness conditions and numerical approximation of the solution to M.M.~Lavrentiev's integral equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 441-458. http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a8/
[1] M. M. Lavrentev, “Ob odnoi obratnoi zadache dlya volnovogo uravneniya”, Dokl. AN SSSR, 157:3 (1964), 520–521
[2] M. M. Lavrentev, “Ob odnom klasse obratnykh zadach dlya differentsialnykh uravnenii”, Dokl. AN SSSR, 160:1 (1965), 32–35
[3] A. B. Bakushinskii, A. I. Kozlov, M. Yu. Kokurin, “Ob odnoi obratnoi zadache dlya trekhmernogo volnovogo uravneniya”, Zhurn. vychisl. matem. i mat. fiziki, 47:3 (2003), 1201–1209
[4] B. R. Vainberg, Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, Izd-vo MGU, M., 1982
[5] V. G. Romanov, “O gladkosti fundamentalnogo resheniya dlya giperbolicheskogo uravneniya vtorogo poryadka”, Sib. mat. zhurnal, 50:4 (2009), 883–889
[6] A. I. Kozlov, M. Yu. Kokurin, “Ob integralnykh uravneniyakh tipa M.M. Lavrenteva v koeffitsientnykh obratnykh zadachakh dlya volnovykh uravnenii”, Zhurn. vychisl. matem. i mat. fiziki, 61:9 (2021), 1492–1507
[7] M. Klibanov, J. Li, W. Zhang, “Linear Lavrent'ev integral equation for the numerical solution of a nonlinear coefficient inverse problem”, SIAM J. Appl. Math., 81:5 (2021), 1954–1978
[8] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980
[9] A. G. Ramm, Mnogomernye obratnye zadachi rasseyaniya, Mir, M., 1994
[10] A. L. Bukhgeim, G. V. Dyatlov, V. B. Kardakov, E. V. Tantserev, “Edinstvennost v odnoi obratnoi zadache dlya sistemy uravnenii uprugosti”, Sib. mat. zhurnal, 45:4 (2004), 747–757
[11] M. Yu. Kokurin, S. K. Paimerov, “Ob obratnoi koeffitsientnoi zadache dlya volnovogo uravneniya v ogranichennoi oblasti”, Zhurn. vychisl. matem. i mat. fiziki, 48:1 (2008), 117–128
[12] M. Yu. Kokurin, “On a multidimensional integral equation with data supported by low-dimensional analytic manifolds”, J. of Inverse and Ill-Posed Probl, 21:1 (2013), 125–140
[13] M. Yu. Kokurin, “O polnote proizvedenii garmonicheskikh funktsii i edinstvennosti resheniya obratnoi zadachi akusticheskogo zondirovaniya”, Mat. zametki, 104:5 (2018), 708–716
[14] M. Yu. Kokurin, “O polnote proizvedenii reshenii uravneniya Gelmgoltsa”, Izv. vuzov. Matematika, 2020, no. 6, 30–35
[15] M. Yu. Kokurin, “Polnota asimmetrichnykh proizvedenii reshenii ellipticheskogo uravneniya vtorogo poryadka i edinstvennost resheniya obratnoi zadachi dlya volnovogo uravneniya”, Diff. uravneniya, 57:2 (2021), 255–264
[16] A. B. Bakushinskii, A. S. Leonov, “Ekonomichnyi chislennyi metod resheniya koeffitsientnoi obratnoi zadachi dlya volnovogo uravneniya v trekhmernom prostranstve”, Zhurn. vychisl. matem. i mat. fiziki, 58:4 (2018), 561–574
[17] M. V. Klibanov, V. G. Romanov, “Reconstruction procedures for two inverse scattering problem without the phase information”, SIAM J. Appl. Math., 76:1 (2016), 178–196
[18] V. G. Romanov, “Zadacha ob opredelenii koeffitsienta dielektricheskoi pronitsaemosti po modulyu rasseyannogo elektromagnitnogo polya”, Sib. mat. zhurnal, 58:4 (2017), 916–924
[19] V. G. Romanov, “Obratnye zadachi bez fazovoi informatsii, ispolzuyuschie interferentsiyu voln”, Sib. mat. zhurnal, 59:3 (2018), 626–638
[20] V. A. Dedok, A. L. Karchevskii, V. G. Romanov, “Chislennyi metod opredeleniya dielektricheskoi pronitsaemosti po modulyu vektora elektricheskoi napryazhennosti elektromagnitnogo polya”, Sib. zhurn. industr. matematiki, 22:3 (2019), 48–58
[21] L. D. Kudryavtsev, Kurs matematicheskogo analiza, v. 2, Drofa, M., 2004
[22] V. A. Ditkin, A. P. Prudnikov, Integralnye preobrazovaniya i operatsionnoe ischislenie, GIFML, M., 1961
[23] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1965
[24] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974
[25] V. V. Voevodin, Yu. A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984