Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2022_25_4_a1, author = {S. A. Gusev}, title = {On the variance of the estimate of the functional of the diffusion process in a domain with a reflecting boundary}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {359--369}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a1/} }
TY - JOUR AU - S. A. Gusev TI - On the variance of the estimate of the functional of the diffusion process in a domain with a reflecting boundary JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 359 EP - 369 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a1/ LA - ru ID - SJVM_2022_25_4_a1 ER -
%0 Journal Article %A S. A. Gusev %T On the variance of the estimate of the functional of the diffusion process in a domain with a reflecting boundary %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2022 %P 359-369 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a1/ %G ru %F SJVM_2022_25_4_a1
S. A. Gusev. On the variance of the estimate of the functional of the diffusion process in a domain with a reflecting boundary. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 4, pp. 359-369. http://geodesic.mathdoc.fr/item/SJVM_2022_25_4_a1/
[1] S. A. Gusev, “Minimizatsiya dispersii otsenki matematicheskogo ozhidaniya funktsionala diffuzionnogo protsessa na osnove parametricheskogo preobrazovaniya parabolicheskoi kraevoi zadachi”, Sib. zhurn. vychisl. matematiki, 14:2 (2011), 141–153
[2] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[3] G. N. Milshtein, “Primenenie chislennogo integrirovaniya stokhasticheskikh uravnenii dlya resheniya kraevykh zadach s granichnymi usloviyami Neimana”, Teoriya veroyatnostei i ee primeneniya, 41:1 (1996), 210–218
[4] A. V. Skorokhod, “Stokhasticheskie uravneniya dlya protsessov diffuzii s granitsami”, Teoriya veroyatnostei i ee primeneniya, 6 (1961), 287–298
[5] A. V. Skorokhod, “Stokhasticheskie uravneniya dlya protsessov diffuzii s granitsami. II”, Teoriya veroyatnostei i ee primeneniya, 7 (1962), 5–25
[6] M. Bossy, E. Gobet, D. Talay, “Symmetrized Euler scheme for an efficient approximation of reflected diffusions”, J. Appl. Probab., 41:3 (2004), 877–889
[7] C. Costantini, P. Pacchiarotti, F. Sartoretto, “Numerical approximation for functionals for reflected diffusion processes”, SIAM J. Appl. Math., 58:1 (1998), 73–102
[8] E. Gobet, “Weak approximation of killed diffusion using Euler schemes”, Stochastic Processes and their Applications, 87 (2000), 167–197
[9] P. L. Lions, A. S. Sznitman, “Stochastic differential equations with reflected boundary conditions”, Comm. Pure Appl. Math., 37 (1984), 511–537
[10] Y. Saisho, “Stochastic differential equations for multi-dimensional domain with reflecting boundary”, Probab. Theory Rel. Fields, 74 (1987), 455–477
[11] H. Tanaka, “Stochastic differential equations with reflected boundary condition in convex regions”, Hiroshima Math. J., 9 (1979), 163–177