On one method of constructing quadrature formulas for
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 249-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to constructing quadrature formulas for singular and hypersingular integrals evaluation. For evaluating the integrals with the weights $(1-t)^{\gamma_1}(1 + t)^{\gamma_2}$, $\gamma_1$, $\gamma_2>-1$, defined on $[-1, 1]$, we have constructed quadrature formulas uniformly converging on $[-1, 1]$ to the original integral with the weights $(1-t)^{\gamma_1}(1 + t)^{\gamma_2}$, $\gamma_1$, $\gamma_2\geqslant-1/2$, and converging to the original integral for $-1 t 1$ with the weights $(1-t)^{\gamma_1}(1 + t)^{\gamma_2}$, $\gamma_1$, $\gamma_2>-1$. In the latter case a sequence of quadrature formulas converges to evaluating integral uniformly on $[-1 + \delta, 1 -\delta]$, where $\delta>0$ is arbitrarily small. We propose a method for construction and error estimate of quadrature formulas for evaluating hypersingular integrals based on transformation of quadrature formulas for evaluation of singular integrals. We also propose a method of the error estimate for quadrature formulas for singular integrals evaluation based on the approximation theory methods. The results obtained were extended to hypersigular integrals.
@article{SJVM_2022_25_3_a2,
     author = {I. V. Boykov and A. I. Boikova},
     title = {On one method of constructing quadrature formulas for},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {249--267},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a2/}
}
TY  - JOUR
AU  - I. V. Boykov
AU  - A. I. Boikova
TI  - On one method of constructing quadrature formulas for
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 249
EP  - 267
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a2/
LA  - ru
ID  - SJVM_2022_25_3_a2
ER  - 
%0 Journal Article
%A I. V. Boykov
%A A. I. Boikova
%T On one method of constructing quadrature formulas for
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 249-267
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a2/
%G ru
%F SJVM_2022_25_3_a2
I. V. Boykov; A. I. Boikova. On one method of constructing quadrature formulas for. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 249-267. http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a2/

[1] A. V. Saakyan, “Kvadraturnye formuly naivysshei algebraicheskoi tochnosti dlya integrala tipa Koshi, kogda pokazateli vesovoi funktsii Yakobi kompleksnye”, Izvestiya RAN. Mekhanika tverdogo tela, 2012, no. 6, 116–121

[2] A. V. Sahakyan, H. A. Amirjanyan, “Method of mechanical quadratures for solving singular integral equations of various types”, J. Physics: Conf. Series, 991 (2018), 012070 | DOI

[3] V. V. Ivanov, Teoriya priblizhennykh metodov i ee primenenie k chislennomu resheniyu singulyarnykh integralnykh uravnenii, Naukova dumka, Kiev, 1968

[4] I. K. Lifanov, Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, TOO “Yanus”, M., 1995 | MR

[5] I. V. Boikov, Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov, v. 1, Singulyarnye integraly, Izd-vo Penzenskogo gos. un-ta, Penza, 2005 | MR

[6] Sh. S. Khubezhty, “Kvadraturnye formuly dlya singulyarnykh integralov i nekotorye ikh primeneniya”, Itogi nauki. Yug Rossii. Matematicheskaya monografiya, 3, eds. D.G. Sanikidze, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012

[7] A. M. Korsunsky, “Gauss-Chebyshev quadrature formulae for strongly singular integrals”, Quart. Appl. Math., 56 (1998), 461–472 | DOI | MR

[8] I. V. Boykov, “Numerical methods of computation of singular and hypersingular integrals”, J. Math. Math. Sci., 28 (2001), 127–179 | DOI | MR

[9] Y.-S. Chan, A. C. Fannjiang, G. H. Paulino, “Integral equations with hypersingular kernels-theory and applications to fracture mechanics”, Intern. J. Engineering Science, 41 (2003), 683–720 | DOI | MR

[10] I.V. Boykov, E.S. Ventsel, A.I. Boykova, “Accuracy optimal methods for evaluating hypersingular integrals”, Applied Numerical, 59:6 (2009), 1366–1385 | DOI | MR

[11] X. Zhang, J. Wu, D. Yu, “Superconvergence of the composite Simpson?s rule for a certain finite-part integral and its applications”, J. Comput. Appl. Math., 223:2 (2009), 598–613 | DOI | MR

[12] L. Yu. Plieva, “Kvadraturnye formuly interpolyatsionnogo tipa dlya gipersingulyarnykh integralov na otrezke integrirovaniya”, Sib. zhurn. vychisl. matematiki, 19:4 (2016), 419–428 | MR

[13] M. C. De Bonis, D. Occorsio, “Numerical methods for hypersingular integrals on the real line”, Dolomites Research Notes on Approximation, 10 (2017), 97–117 | MR

[14] G.M. Vainikko, I.K. Lifanov, L.N. Poltavskii, Chislennye metody v gipersingulyarnykh integralnykh uravneniyakh i ikh prilozheniya, Yanus-K, M., 2001

[15] I. V. Boikov, Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov, v. 2, Gipersingulyarnye integraly, Izd-vo Penzenskogo gos. un-ta, Penza, 2009 | MR

[16] I. V. Boikov, P. V. Aikashev, “Priblizhennye metody vychisleniya gipersingulyarnykh integralov”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2021, no. 1, 66–84 | DOI | MR

[17] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR

[18] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[19] D. Gaier, Konstruktive Methoden der Konformen Abbildung, Springer, Berlin-Heidelberd, 1964 | MR

[20] I. P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR

[21] A. Zigmund, Trigonometricheskie ryady, v. 1, Mir, M., 1965

[22] S. Lu, Y. Ding, D. Yan, Singular Integrals and Related Topics, Word Scientific, New Jersly, 2007 | MR

[23] M. R. Capobianco, G. Criscuolo, “On quadrature for Cauchy principal value integrals of oscillatory functions”, J. Comput. Appl. Math., 156:2 (2003), 471–486 | DOI | MR

[24] A. I. Boikova, “Ob odnom klasse interpolyatsionnykh polinomov”, Optimalnye metody i ikh primenenie, Izd-vo PGTU, Penza, 1996, 141–148

[25] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1976 | MR

[26] N. I. Akhiezer, “O nekotorykh formulakh obrascheniya singulyarnykh integralov”, Izv. AN SSSR. Ser. matematika, 9:4 (1945), 275–290 | MR

[27] G. Sege, Ortogonalnye mnogochleny, GIFML, M., 1962

[28] D. G. Sanikidze, “Kvadraturnye protsessy dlya integralov tipa Koshi”, Mat. zametki, 11:5 (1972), 517–526