On one method of constructing quadrature formulas for
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 249-267
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to constructing quadrature formulas for singular and hypersingular integrals evaluation. For evaluating the integrals with the weights $(1-t)^{\gamma_1}(1 + t)^{\gamma_2}$, $\gamma_1$, $\gamma_2>-1$, defined on $[-1, 1]$, we have constructed quadrature formulas uniformly converging on $[-1, 1]$ to the original integral with the weights $(1-t)^{\gamma_1}(1 + t)^{\gamma_2}$, $\gamma_1$, $\gamma_2\geqslant-1/2$, and converging to the original integral for $-1 t 1$ with the weights $(1-t)^{\gamma_1}(1 + t)^{\gamma_2}$, $\gamma_1$, $\gamma_2>-1$. In the latter case a sequence of quadrature formulas converges to evaluating integral uniformly on $[-1 + \delta, 1 -\delta]$, where $\delta>0$ is arbitrarily small. We propose a method for construction and error estimate of quadrature formulas for evaluating hypersingular integrals based on transformation of quadrature formulas for evaluation of singular integrals. We also propose a method of the error estimate for quadrature formulas for singular integrals evaluation based on the approximation theory methods. The results obtained were extended to hypersigular integrals.
@article{SJVM_2022_25_3_a2,
author = {I. V. Boykov and A. I. Boikova},
title = {On one method of constructing quadrature formulas for},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {249--267},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a2/}
}
TY - JOUR AU - I. V. Boykov AU - A. I. Boikova TI - On one method of constructing quadrature formulas for JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 249 EP - 267 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a2/ LA - ru ID - SJVM_2022_25_3_a2 ER -
I. V. Boykov; A. I. Boikova. On one method of constructing quadrature formulas for. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 249-267. http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a2/