An implicit multilayer parallel algorithm for multidimensional wave equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 241-247
Voir la notice de l'article provenant de la source Math-Net.Ru
The numerical algorithm without saturation for wave equation is considered. It is supposed that Laplace's
operator has the discrete, valid range, and the corresponding matrix of the discrete operator Laplace has the
complete set of eigenvectors. The technique speaks the example of the one-dimensional equation, but during
statement is shown that the dimension is insignificant here.
@article{SJVM_2022_25_3_a1,
author = {S. D. Algazin},
title = {An implicit multilayer parallel algorithm for multidimensional wave equation},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {241--247},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a1/}
}
TY - JOUR AU - S. D. Algazin TI - An implicit multilayer parallel algorithm for multidimensional wave equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 241 EP - 247 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a1/ LA - ru ID - SJVM_2022_25_3_a1 ER -
S. D. Algazin. An implicit multilayer parallel algorithm for multidimensional wave equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 241-247. http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a1/