Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2022_25_3_a1, author = {S. D. Algazin}, title = {An implicit multilayer parallel algorithm for multidimensional wave equation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {241--247}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a1/} }
TY - JOUR AU - S. D. Algazin TI - An implicit multilayer parallel algorithm for multidimensional wave equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 241 EP - 247 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a1/ LA - ru ID - SJVM_2022_25_3_a1 ER -
S. D. Algazin. An implicit multilayer parallel algorithm for multidimensional wave equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 241-247. http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a1/
[1] S. D. Algazin, Chislennye algoritmy bez nasyscheniya v klassicheskikh zadachakh matematicheskoi fiziki, 4-e izd. pererab., URSS, M., 2019
[2] K. I. Babenko, Osnovy chislennogo analiza, Nauka, M., 1986
[3] V. L. Goncharov, Teoriya interpolirovaniya i priblizheniya funktsii, Gostekhteorizdat, M., 1954 | MR
[4] M. B. Gavrikov, “Metody bez nasyscheniya v vychislitelnoi matematike”, Preprinty IPM im. M. V. Keldysha, 2019, 075, 40 pp.
[5] V. N. Belykh, “Chislennye algoritmy bez nasyscheniya v nestatsionarnykh zadachakh gidrodinamiki idealnoi zhidkosti so svobodnymi granitsami”, Tr. In-ta matematiki, 11 (1988), 3–67
[6] M. Markus, Kh. Mink, Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR
[7] S. D. Algazin, “Mnogosloinyi, neyavnyi, parallelnyi algoritm dlya uravneniya teploprovodnosti v parallelepipede”, Inzhenerno-fizicheskii zhurnal. Minsk, 88:5 (2015), 1096–1099