An implicit multilayer parallel algorithm for multidimensional wave equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 241-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical algorithm without saturation for wave equation is considered. It is supposed that Laplace's operator has the discrete, valid range, and the corresponding matrix of the discrete operator Laplace has the complete set of eigenvectors. The technique speaks the example of the one-dimensional equation, but during statement is shown that the dimension is insignificant here.
@article{SJVM_2022_25_3_a1,
     author = {S. D. Algazin},
     title = {An implicit multilayer parallel algorithm for multidimensional wave equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {241--247},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a1/}
}
TY  - JOUR
AU  - S. D. Algazin
TI  - An implicit multilayer parallel algorithm for multidimensional wave equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 241
EP  - 247
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a1/
LA  - ru
ID  - SJVM_2022_25_3_a1
ER  - 
%0 Journal Article
%A S. D. Algazin
%T An implicit multilayer parallel algorithm for multidimensional wave equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 241-247
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a1/
%G ru
%F SJVM_2022_25_3_a1
S. D. Algazin. An implicit multilayer parallel algorithm for multidimensional wave equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 3, pp. 241-247. http://geodesic.mathdoc.fr/item/SJVM_2022_25_3_a1/

[1] S. D. Algazin, Chislennye algoritmy bez nasyscheniya v klassicheskikh zadachakh matematicheskoi fiziki, 4-e izd. pererab., URSS, M., 2019

[2] K. I. Babenko, Osnovy chislennogo analiza, Nauka, M., 1986

[3] V. L. Goncharov, Teoriya interpolirovaniya i priblizheniya funktsii, Gostekhteorizdat, M., 1954 | MR

[4] M. B. Gavrikov, “Metody bez nasyscheniya v vychislitelnoi matematike”, Preprinty IPM im. M. V. Keldysha, 2019, 075, 40 pp.

[5] V. N. Belykh, “Chislennye algoritmy bez nasyscheniya v nestatsionarnykh zadachakh gidrodinamiki idealnoi zhidkosti so svobodnymi granitsami”, Tr. In-ta matematiki, 11 (1988), 3–67

[6] M. Markus, Kh. Mink, Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[7] S. D. Algazin, “Mnogosloinyi, neyavnyi, parallelnyi algoritm dlya uravneniya teploprovodnosti v parallelepipede”, Inzhenerno-fizicheskii zhurnal. Minsk, 88:5 (2015), 1096–1099