Regularization of Fourier series with approximate coefficients for the problem of phase probability density function estimation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 157-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the problem of phases probability distribution function estimation for phase-shift-keying signals. The modulating sequence, and, accordingly, the values of the symbols phases, as well as the statistical characteristics of this sequence are unknown. The Fourier coefficients are calculated based on a limited sample for estimation of phases probability distribution function. In this case, the obtained Fourier coefficients are regularized. Application of multiparameter regularization for increasing the estimation accuracy are considered. The numerical simulation results are presented.
@article{SJVM_2022_25_2_a4,
     author = {M. L. Maslakov and V. V. Egorov},
     title = {Regularization of {Fourier} series with approximate coefficients for the problem of phase probability density function estimation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {157--171},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a4/}
}
TY  - JOUR
AU  - M. L. Maslakov
AU  - V. V. Egorov
TI  - Regularization of Fourier series with approximate coefficients for the problem of phase probability density function estimation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 157
EP  - 171
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a4/
LA  - ru
ID  - SJVM_2022_25_2_a4
ER  - 
%0 Journal Article
%A M. L. Maslakov
%A V. V. Egorov
%T Regularization of Fourier series with approximate coefficients for the problem of phase probability density function estimation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 157-171
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a4/
%G ru
%F SJVM_2022_25_2_a4
M. L. Maslakov; V. V. Egorov. Regularization of Fourier series with approximate coefficients for the problem of phase probability density function estimation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 157-171. http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a4/

[1] Mardia K. V., Jupp P. E., Directional Statistics, John Wiley Sons Inc, 2000 | MR

[2] Jammalamadaka S. R., SenGupta A., Topics in Circular Statistics, World Scientific Publishing Co, Singapore, 2001 | MR | Zbl

[3] Xiong F., Digital Modulation Techniques, Artech House Inc, Boston, 2006 | Zbl

[4] Sirota A. A., Metody i algoritmy analiza dannykh i ikh modelirovanie v MATLAB, BKhV-Peterburg, SPb., 2016

[5] Gubarev V. V., Algoritmy statisticheskikh izmerenii, Energoatomizdat, M., 1985

[6] Zhuk V. V., Nanton G. I., Trigonometricheskie ryady Fure i elementy teorii approksimatsii, Izd-vo Leningradskogo universiteta, L., 1983 | MR

[7] Zhuk V. V., Approksimatsiya periodicheskikh funktsii, Izd-vo Leningradskogo universiteta, L., 1982

[8] Tolstov G. P., Ryady Fure, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1980

[9] N.P. Buslenko, D.I. Golenko, I.M. Sobol i dr., Metod statisticheskikh ispytanii, Gos. izd-vo fiziko-matematicheskoi literatury, M., 1962 | MR

[10] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979

[11] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izd-vo, Novosibirsk, 2009

[12] Tikhonov A. N., “Ob ustoichivykh metodakh summirovaniya ryadov Fure”, Dokl. AN SSSR, 156:2 (1964), 268–271 | Zbl

[13] Arsenin V. Ya., “Ob optimalnom summirovanii ryadov Fure s priblizhennymi koeffitsientami”, Dokl. AN SSSR, 183:2 (1968), 257–260 | MR | Zbl

[14] A.N. Tikhonov, A.V. Goncharskii, V.V. Stepanov i dr., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990 | MR

[15] Zhukov A. I., Metod Fure v vychislitelnoi matematike, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1992 | MR

[16] Maslakov M. L., “Primenenie dvukhparametricheskikh stabiliziruyuschikh funktsii pri reshenii integralnogo uravneniya tipa svertki metodom regulyarizatsii”, Zhurn. vychisl. matem. i mat. fiziki, 58:4 (2018), 541–549 | MR | Zbl

[17] Lu S., Pereverzev S. V., Regularization Theory for Ill-posed Problems, De Gruyter, Berlin, 2013 | MR | Zbl

[18] Maslakov M. L., “Vybor parametra regulyarizatsii v zadachakh adaptivnoi filtratsii”, Zhurn. vychisl. matem. i mat. fiziki, 59:6 (2019), 951–960 | MR | Zbl