Numerical algorithm for solving Prandtl equations with induced pressure in periodic case
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 97-109
Voir la notice de l'article provenant de la source Math-Net.Ru
A viscous liquid flow along a semi-infinite plate with small periodic irregularities on the surface was considered for large Reynolds numbers. The flow near the plate is described by Prandtl equations with induced pressure which are non-classical PDE, because they contain a limiting term. The main goal is to construct a numerical algorithm for solving these equations with periodic boundary conditions. The results of numerical modeling of the flow are presented.
@article{SJVM_2022_25_2_a0,
author = {R. K. Gaydukov},
title = {Numerical algorithm for solving {Prandtl} equations with induced pressure in periodic case},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {97--109},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a0/}
}
TY - JOUR AU - R. K. Gaydukov TI - Numerical algorithm for solving Prandtl equations with induced pressure in periodic case JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 97 EP - 109 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a0/ LA - ru ID - SJVM_2022_25_2_a0 ER -
R. K. Gaydukov. Numerical algorithm for solving Prandtl equations with induced pressure in periodic case. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 97-109. http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a0/