Numerical algorithm for solving Prandtl equations with induced pressure in periodic case
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 97-109

Voir la notice de l'article provenant de la source Math-Net.Ru

A viscous liquid flow along a semi-infinite plate with small periodic irregularities on the surface was considered for large Reynolds numbers. The flow near the plate is described by Prandtl equations with induced pressure which are non-classical PDE, because they contain a limiting term. The main goal is to construct a numerical algorithm for solving these equations with periodic boundary conditions. The results of numerical modeling of the flow are presented.
@article{SJVM_2022_25_2_a0,
     author = {R. K. Gaydukov},
     title = {Numerical algorithm for solving {Prandtl} equations with induced pressure in periodic case},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {97--109},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a0/}
}
TY  - JOUR
AU  - R. K. Gaydukov
TI  - Numerical algorithm for solving Prandtl equations with induced pressure in periodic case
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 97
EP  - 109
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a0/
LA  - ru
ID  - SJVM_2022_25_2_a0
ER  - 
%0 Journal Article
%A R. K. Gaydukov
%T Numerical algorithm for solving Prandtl equations with induced pressure in periodic case
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 97-109
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a0/
%G ru
%F SJVM_2022_25_2_a0
R. K. Gaydukov. Numerical algorithm for solving Prandtl equations with induced pressure in periodic case. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 2, pp. 97-109. http://geodesic.mathdoc.fr/item/SJVM_2022_25_2_a0/