On an approach to numerical solutions of the Dirichlet problem of an arbitrary dimension
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 77-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for the search for numerical solutions to the Dirichlet boundary value problems for nonlinear partial differential equations of the elliptic type and of an arbitrary dimension is proposed. It ensures low consumptions of memory and computer time for the problems with smooth solutions. The method is based on the modified interpolation polynomials with the Chebyshev nodes for approximation of the sought for function and on the new approach to constructing and solving the problems of linear algebra corresponding to the given differential equations. The analysis of spectra and condition numbers of matrices of the designed algorithm is made by applying the interval methods. The theorems on approximation and stability of the algorithm proposed for the linear case are proved. It is shown that the algorithm ensures an essential decrease in computational costs as compared to the classical collocation methods and to finite difference schemes.
@article{SJVM_2022_25_1_a5,
     author = {B. V. Semisalov},
     title = {On an approach to numerical solutions of the {Dirichlet} problem of an arbitrary dimension},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {77--95},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a5/}
}
TY  - JOUR
AU  - B. V. Semisalov
TI  - On an approach to numerical solutions of the Dirichlet problem of an arbitrary dimension
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 77
EP  - 95
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a5/
LA  - ru
ID  - SJVM_2022_25_1_a5
ER  - 
%0 Journal Article
%A B. V. Semisalov
%T On an approach to numerical solutions of the Dirichlet problem of an arbitrary dimension
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 77-95
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a5/
%G ru
%F SJVM_2022_25_1_a5
B. V. Semisalov. On an approach to numerical solutions of the Dirichlet problem of an arbitrary dimension. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 77-95. http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a5/

[1] Trefethen L. N., Spectral Methods in Matlab, SIAM, Philadelphia, 2000 | MR | Zbl

[2] Boyd J., Chebyshev and Fourier Spectral Methods, Second ed., DOVER Publication Inc., Mineola, New York, 2000 | MR

[3] Semisalov B. V., “Nelokalnyi algoritm poiska reshenii uravneniya Puassona i ego prilozheniya”, Zhurn. vychisl. matem. i mat. fiziki, 54:7 (2014), 1110–1135 | Zbl

[4] Babenko K. I., Osnovy chislennogo analiza, Nauka. Gl. red. fiz.-mat. lit., M., 1986

[5] Gottlieb D., Hussaini M. Y., Orszag S. A., “Theory and applications of spectral methods”, Spectral Methods for Partial Differential Equations, eds. R. G. Voigt, D. Gottlieb, M. Y. Hussaini, SIAM, Philadelphia, 1984, 1–54 | MR

[6] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, 6-e izd., BINOM. Laboratoriya znanii, M., 2008 | MR

[7] Rump S. M., “Verification methods: Rigorous results using floating-point arithmetic”, Acta Numerica, 19 (2010), 287–449 | DOI | MR | Zbl

[8] Rump S. M., “INTLAB-INTerval LABoratory”, Developments in Reliable Computing, ed. T. Csendes, Kluwer Academic Publishers, 1999, 77–104 | DOI | MR | Zbl

[9] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980

[10] Belov A. A., Kalitkin N. N., “Evolyutsionnaya faktorizatsiya i sverkhbystryi schet na ustanovlenie”, Mat. modelirovanie, 26:9 (2014), 47–64 | Zbl

[11] Konovalov A. N., Vvedenie v vychislitelnye metody lineinoi algebry, Nauka. Sib. otd-nie, Novosibirsk, 1993

[12] Belykh V. N., “Osobennosti realizatsii nenasyschaemogo chislennogo metoda dlya vneshnei osesimmetrichnoi zadachi Neimana”, Sib. mat. zhurnal, 54:6 (2013), 1237–1249 | MR | Zbl

[13] Semisalov B. V., Programma poiska reshenii kraevykh zadach dlya uravnenii v chastnykh proizvodnykh s vysokoi tochnostyu i malymi vychislitelnymi zatratami «Nelokalnyi metod bez nasyscheniya», Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM No 2015615527 ot 20 maya 2015 g. http://www1.fips.ru/Archive/EVM/2015/2015.06.20/DOC/RUNW/000/002/015/615/527/document.pdf

[14] Kalitkin N. N., Chislennye metody, Nauka, M., 1978

[15] Blokhin A. M., Semisalov B. V., “Raschet statsionarnykh neizotermicheskikh MGD techenii polimernoi zhidkosti v kanalakh s vnutrennimi nagrevatelnymi elementami”, Sib. zhurn. industr. matematiki, 23:2 (2020), 17–40

[16] Golushko S. K., Semisalov B. V., “Calculation and design of lattice cylindrical shells manufactured of unidirectional CFRPs”, J. Phys.: Conf. Series, 894 (2017), 012022 http://iopscience.iop.org/article/10.1088/1742-6596/894/1/012022 | DOI

[17] Blokhin A. M., Kruglova E. A., Semisalov B. V., “Otsenka dvukh komponent pogreshnosti chislennogo resheniya zadachi o neizotermicheskom techenii polimernykh rastvorov mezhdu dvumya soosnymi tsilindrami”, Zhurn. vychisl. matem. i mat. fiziki, 58:7 (2018), 1099–1115 | Zbl

[18] Tee T. W., Trefethen L. N., “A rational spectral collocation method with adaptively transformed Chebyshev grid points”, SIAM J. Scientific Computing, 28:5 (2006), 1798–1811 | DOI | MR | Zbl