On matrices whose cosquares are diagonalizable and have real spectra
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 53-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the algorithm for verifying congruence of square roots of Hermitian matrices proposed earlier by the author can be extended to the considerably more broad class of matrices whose cosquares are diagonalizable and have real spectra.
@article{SJVM_2022_25_1_a3,
     author = {Kh. D. Ikramov},
     title = {On matrices whose cosquares are diagonalizable and have real spectra},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {53--57},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a3/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - On matrices whose cosquares are diagonalizable and have real spectra
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 53
EP  - 57
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a3/
LA  - ru
ID  - SJVM_2022_25_1_a3
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T On matrices whose cosquares are diagonalizable and have real spectra
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 53-57
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a3/
%G ru
%F SJVM_2022_25_1_a3
Kh. D. Ikramov. On matrices whose cosquares are diagonalizable and have real spectra. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 53-57. http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a3/

[1] Kh.D. Ikramov, “Square roots of hermitian matrices and a rational algorithm for checking their congruence”, Moscow University Computational Mathematics and Cybernetics, 43:3 (2019), 95–100 | DOI | MR | Zbl

[2] Horn R. A., Johnson C. R., Matrix Analysis, Second ed., Cambridge University Press, 2013 | MR | Zbl