On matrices whose cosquares are diagonalizable and have real spectra
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 53-57
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the algorithm for verifying congruence of square roots of Hermitian matrices proposed earlier by the author can be extended to the considerably more broad class of matrices whose cosquares are diagonalizable and have real spectra.
@article{SJVM_2022_25_1_a3,
author = {Kh. D. Ikramov},
title = {On matrices whose cosquares are diagonalizable and have real spectra},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {53--57},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a3/}
}
Kh. D. Ikramov. On matrices whose cosquares are diagonalizable and have real spectra. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 53-57. http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a3/