A method of the magnetotelluric field numerical modelling in a horizontally homogeneous medium: difference schemes, estimates of convergence
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 33-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper proposes a method for the numerical solution of the direct one-dimensional problem of magnetotelluric sounding. The construction of difference schemes is realized by the local integral equations method. A natural variant of the interpolation of an approximate solution is considered. The estimate of convergence of the approximate solution to the exact one and the estimate of the interpolation error are proved.
@article{SJVM_2022_25_1_a2,
     author = {O. B. Zabinyakova and S. N. Sklyar},
     title = {A method of the magnetotelluric field numerical modelling in a horizontally homogeneous medium: difference schemes, estimates of convergence},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {33--51},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a2/}
}
TY  - JOUR
AU  - O. B. Zabinyakova
AU  - S. N. Sklyar
TI  - A method of the magnetotelluric field numerical modelling in a horizontally homogeneous medium: difference schemes, estimates of convergence
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 33
EP  - 51
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a2/
LA  - ru
ID  - SJVM_2022_25_1_a2
ER  - 
%0 Journal Article
%A O. B. Zabinyakova
%A S. N. Sklyar
%T A method of the magnetotelluric field numerical modelling in a horizontally homogeneous medium: difference schemes, estimates of convergence
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 33-51
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a2/
%G ru
%F SJVM_2022_25_1_a2
O. B. Zabinyakova; S. N. Sklyar. A method of the magnetotelluric field numerical modelling in a horizontally homogeneous medium: difference schemes, estimates of convergence. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 33-51. http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a2/

[1] Berdichevskii M. N., Dmitriev V. I., Modeli i metody magnitotelluriki, Nauchnyi mir, M., 2009

[2] Rybin A. K., Glubinnoe stroenie i sovremennaya geodinamika tsentralnogo Tyan-Shanya po rezultatam magnitotelluricheskikh issledovanii, Nauchnyi mir, M., 2011

[3] Zhdanov M. S., Elektrorazvedka, Uchebnik dlya vuzov, Nedra, M., 1986

[4] Zhamaletdinov A. A., Magnitotelluricheskii metod izucheniya stroeniya massivov gornykh porod, Uch. posobie, Apatity, 2014

[5] Tikhonov A. N., “Ob opredelenii elektricheskikh kharakteristik glubokikh sloev zemnoi kory”, Dokl. AN SSSR, 73:2 (1950), 295–297

[6] Cagniard L., “Basic theory of the magneto-telluric method of geophysical prospecting”, Geophysics, 18:3 (1953), 605–635 | DOI

[7] Yudin V. M., Yudin M. N., Matematicheskoe modelirovanie v geoelektrike, uch. posobie, v. I, Sloistye modeli sredy, Rossiiskii gosudarstvennyi geologorazvedochnyi universitet im. Sergo Ordzhonikidze (MGRI), M., 2007

[8] Berdichevskii M. N., Dmitriev V. I., Magnitotelluricheskoe zondirovanie gorizontalno-odnorodnykh sred, Nedra, M., 1992

[9] Tabarovskii L. A., Epov M. I., “Elektromagnitnye polya garmonicheskikh istochnikov v sloistykh anizotropnykh sredakh”, Geologiya i geofizika, 1977, no. 1, 101–109

[10] Tabarovskii L. A., “Elektromagnitnye polya poperechno-elektricheskogo i poperechno-magnitnogo tipa v mnogosloinykh sredakh”, Elektromagnitnye metody issledovaniya skvazhin, Nauka, Novosibirsk, 1979, 225–233

[11] Aleksandrov P. N., “Pryamaya zadacha geoelektriki v odnomernykh bianizotropnykh sredakh”, Fizika Zemli, 2001, no. 4, 51–61

[12] Karchevskii A. L., “Analiticheskoe reshenie uravnenii Maksvella v chastotnoi oblasti dlya gorizontalno-sloistykh anizotropnykh sred”, Geologiya i geofizika, 48:8 (2007), 889–898

[13] Aleksandrov P. N., Zabinyakova O. B., “Matematicheskoe modelirovanie magnitotelluricheskogo polya v odnomernykh kusochno-gradientnykh sredakh”, Vestnik KRAUNTs. Seriya: Nauki o Zemle, 47:3 (2020), 75–85 | DOI | MR

[14] Yee K. S., “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Transactions on Antennas and Propagation, 14:3 (1966), 302–307 | DOI | Zbl

[15] Taflove A., Hagness S. C., Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed., Artech House, Norwood, MA, 2000 | MR | Zbl

[16] Sullivan D. M., Electromagnetic Simulation Using the Finite-Difference Time-Domain Method, IEEE Press, New York, 2000

[17] Lebedev A. S., Fedoruk M. P., Shtyrina O. V., “Reshenie nestatsionarnykh uravnenii Maksvella dlya sred s neodnorodnymi svoistvami metodom konechnykh ob'emov”, Vychislitelnye tekhnologii, 10:2 (2005), 60–73 | Zbl

[18] Lebedev A. S., Fedoruk M. P., Shtyrina O. V., “Konechno-ob'emnyi algoritm resheniya nestatsionarnykh uravnenii Maksvella na nestrukturirovannoi setke”, Zhurn. vychisl. matem. i mat. fiziki, 47:7 (2006), 1286–1301

[19] Zabinyakova O. B., Zinchenko D. I., Kulagina M. A., Rybin A. K., Sklyar S. N., “Chislennye metody resheniya pryamykh zadach magnitotelluricheskogo zondirovaniya”, Aktualnye problemy teorii upravleniya, topologii i operatornykh uravnenii, materialy vtoroi mezhdunar. yubileinoi konferentsii, posvyaschennoi 20-letiyu obrazovaniya KRSU im. B. Eltsina i 100-letiyu prof. Ya. Bykova, v. 2, ed. A.K. Kerimbekova, Maxprint, Bishkek, 2013, 194–198

[20] Zabinyakova O. B., “Proektsionnye raznostnye skhemy dlya sistemy uravnenii Maksvella”, Sovremennye tekhnika i tekhnologii v nauchnykh issledovaniyakh, Sb. materialov VI Mezhdunar. konf. molodykh uchenykh i studentov, Bishkek, 2014, 134–138

[21] Zabinyakova O. B., Sklyar S. N., “Primenenie proektsionnykh raznostnykh skhem dlya resheniya pryamoi dvumernoi zadachi magnitotelluricheskogo zondirovaniya”, Vestnik Kyrgyzsko-rossiiskogo slavyanskogo universiteta, 16:1 (2016), 3–10

[22] Zabinyakova O. B., Sklyar S. N., “Rezultaty chislennykh eksperimentov po modelirovaniyu magnitotelluricheskogo polya v vertikalno gradientnoi srede”, Problemy informatiki, 2020, no. 2, 15–36 | MR

[23] Zabinyakova O. B., Sklyar S. N., “Chislennoe modelirovanie magnitotelluricheskogo impedansa v vertikalno gradientnoi srede na osnove metoda lokalnykh integralnykh uravnenii”, Sovremennye tekhnika i tekhnologii v nauchnykh issledovaniyakh, Sb. materialov XII Mezhdunar. konf. molodykh uchenykh i studentov, NS RAN, Bishkek, 2020, 371–379

[24] Gantmakher F. R., Teoriya matrits, Izd. vtoroe. Dopolnennoe, Nauka, M., 1966 | MR

[25] Lankaster P., Teoriya matrits, Per. s angl. izd., Nauka, M., 1982 | MR

[26] Ter-Krikorov A. M., Matrichnye funktsii i lineinye differentsialnye uravneniya, uch.-metod. posobie, MFTI, M., 2014

[27] Sklyar S. N., “A projective version of the integral-interpolation method and it's application for the discretization of the singular perturbation problems”, Advanced Mathematics: Computations and Applications, Proc. Int. Conf. “AMCA-95”, NCC Publisher, Novosibirsk, 1995, 380–385 | MR