Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2022_25_1_a2, author = {O. B. Zabinyakova and S. N. Sklyar}, title = {A method of the magnetotelluric field numerical modelling in a horizontally homogeneous medium: difference schemes, estimates of convergence}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {33--51}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a2/} }
TY - JOUR AU - O. B. Zabinyakova AU - S. N. Sklyar TI - A method of the magnetotelluric field numerical modelling in a horizontally homogeneous medium: difference schemes, estimates of convergence JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2022 SP - 33 EP - 51 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a2/ LA - ru ID - SJVM_2022_25_1_a2 ER -
%0 Journal Article %A O. B. Zabinyakova %A S. N. Sklyar %T A method of the magnetotelluric field numerical modelling in a horizontally homogeneous medium: difference schemes, estimates of convergence %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2022 %P 33-51 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a2/ %G ru %F SJVM_2022_25_1_a2
O. B. Zabinyakova; S. N. Sklyar. A method of the magnetotelluric field numerical modelling in a horizontally homogeneous medium: difference schemes, estimates of convergence. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 33-51. http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a2/
[1] Berdichevskii M. N., Dmitriev V. I., Modeli i metody magnitotelluriki, Nauchnyi mir, M., 2009
[2] Rybin A. K., Glubinnoe stroenie i sovremennaya geodinamika tsentralnogo Tyan-Shanya po rezultatam magnitotelluricheskikh issledovanii, Nauchnyi mir, M., 2011
[3] Zhdanov M. S., Elektrorazvedka, Uchebnik dlya vuzov, Nedra, M., 1986
[4] Zhamaletdinov A. A., Magnitotelluricheskii metod izucheniya stroeniya massivov gornykh porod, Uch. posobie, Apatity, 2014
[5] Tikhonov A. N., “Ob opredelenii elektricheskikh kharakteristik glubokikh sloev zemnoi kory”, Dokl. AN SSSR, 73:2 (1950), 295–297
[6] Cagniard L., “Basic theory of the magneto-telluric method of geophysical prospecting”, Geophysics, 18:3 (1953), 605–635 | DOI
[7] Yudin V. M., Yudin M. N., Matematicheskoe modelirovanie v geoelektrike, uch. posobie, v. I, Sloistye modeli sredy, Rossiiskii gosudarstvennyi geologorazvedochnyi universitet im. Sergo Ordzhonikidze (MGRI), M., 2007
[8] Berdichevskii M. N., Dmitriev V. I., Magnitotelluricheskoe zondirovanie gorizontalno-odnorodnykh sred, Nedra, M., 1992
[9] Tabarovskii L. A., Epov M. I., “Elektromagnitnye polya garmonicheskikh istochnikov v sloistykh anizotropnykh sredakh”, Geologiya i geofizika, 1977, no. 1, 101–109
[10] Tabarovskii L. A., “Elektromagnitnye polya poperechno-elektricheskogo i poperechno-magnitnogo tipa v mnogosloinykh sredakh”, Elektromagnitnye metody issledovaniya skvazhin, Nauka, Novosibirsk, 1979, 225–233
[11] Aleksandrov P. N., “Pryamaya zadacha geoelektriki v odnomernykh bianizotropnykh sredakh”, Fizika Zemli, 2001, no. 4, 51–61
[12] Karchevskii A. L., “Analiticheskoe reshenie uravnenii Maksvella v chastotnoi oblasti dlya gorizontalno-sloistykh anizotropnykh sred”, Geologiya i geofizika, 48:8 (2007), 889–898
[13] Aleksandrov P. N., Zabinyakova O. B., “Matematicheskoe modelirovanie magnitotelluricheskogo polya v odnomernykh kusochno-gradientnykh sredakh”, Vestnik KRAUNTs. Seriya: Nauki o Zemle, 47:3 (2020), 75–85 | DOI | MR
[14] Yee K. S., “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Transactions on Antennas and Propagation, 14:3 (1966), 302–307 | DOI | Zbl
[15] Taflove A., Hagness S. C., Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed., Artech House, Norwood, MA, 2000 | MR | Zbl
[16] Sullivan D. M., Electromagnetic Simulation Using the Finite-Difference Time-Domain Method, IEEE Press, New York, 2000
[17] Lebedev A. S., Fedoruk M. P., Shtyrina O. V., “Reshenie nestatsionarnykh uravnenii Maksvella dlya sred s neodnorodnymi svoistvami metodom konechnykh ob'emov”, Vychislitelnye tekhnologii, 10:2 (2005), 60–73 | Zbl
[18] Lebedev A. S., Fedoruk M. P., Shtyrina O. V., “Konechno-ob'emnyi algoritm resheniya nestatsionarnykh uravnenii Maksvella na nestrukturirovannoi setke”, Zhurn. vychisl. matem. i mat. fiziki, 47:7 (2006), 1286–1301
[19] Zabinyakova O. B., Zinchenko D. I., Kulagina M. A., Rybin A. K., Sklyar S. N., “Chislennye metody resheniya pryamykh zadach magnitotelluricheskogo zondirovaniya”, Aktualnye problemy teorii upravleniya, topologii i operatornykh uravnenii, materialy vtoroi mezhdunar. yubileinoi konferentsii, posvyaschennoi 20-letiyu obrazovaniya KRSU im. B. Eltsina i 100-letiyu prof. Ya. Bykova, v. 2, ed. A.K. Kerimbekova, Maxprint, Bishkek, 2013, 194–198
[20] Zabinyakova O. B., “Proektsionnye raznostnye skhemy dlya sistemy uravnenii Maksvella”, Sovremennye tekhnika i tekhnologii v nauchnykh issledovaniyakh, Sb. materialov VI Mezhdunar. konf. molodykh uchenykh i studentov, Bishkek, 2014, 134–138
[21] Zabinyakova O. B., Sklyar S. N., “Primenenie proektsionnykh raznostnykh skhem dlya resheniya pryamoi dvumernoi zadachi magnitotelluricheskogo zondirovaniya”, Vestnik Kyrgyzsko-rossiiskogo slavyanskogo universiteta, 16:1 (2016), 3–10
[22] Zabinyakova O. B., Sklyar S. N., “Rezultaty chislennykh eksperimentov po modelirovaniyu magnitotelluricheskogo polya v vertikalno gradientnoi srede”, Problemy informatiki, 2020, no. 2, 15–36 | MR
[23] Zabinyakova O. B., Sklyar S. N., “Chislennoe modelirovanie magnitotelluricheskogo impedansa v vertikalno gradientnoi srede na osnove metoda lokalnykh integralnykh uravnenii”, Sovremennye tekhnika i tekhnologii v nauchnykh issledovaniyakh, Sb. materialov XII Mezhdunar. konf. molodykh uchenykh i studentov, NS RAN, Bishkek, 2020, 371–379
[24] Gantmakher F. R., Teoriya matrits, Izd. vtoroe. Dopolnennoe, Nauka, M., 1966 | MR
[25] Lankaster P., Teoriya matrits, Per. s angl. izd., Nauka, M., 1982 | MR
[26] Ter-Krikorov A. M., Matrichnye funktsii i lineinye differentsialnye uravneniya, uch.-metod. posobie, MFTI, M., 2014
[27] Sklyar S. N., “A projective version of the integral-interpolation method and it's application for the discretization of the singular perturbation problems”, Advanced Mathematics: Computations and Applications, Proc. Int. Conf. “AMCA-95”, NCC Publisher, Novosibirsk, 1995, 380–385 | MR