Solving two-dimensional problems of gas dynamics using an implicit scheme for the discontinuous Galerkin method on unstructured triangular grids
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

An implicit scheme of the discontinuous Galerkin method for solving gas dynamics equations on unstructured triangular grids is constructed. The implicit scheme is based on the representation of a system of grid equations in the so-called «delta» form. To solve the resulting SLAE for each moment of time, solvers from the NVIDIA AmgX library are used. To verify the numerical algorithm, a series of calculations were performed for the flow over the NACA0012 symmetric airfoil profile at various angles of attack, and the problem of the flow over the RAE2822 airfoil profile was solved. The results of calculations are presented.
@article{SJVM_2022_25_1_a1,
     author = {R. V. Zhalnin and V. F. Masyagin and V. F. Tishkin},
     title = {Solving two-dimensional problems of gas dynamics using an implicit scheme for the discontinuous {Galerkin} method on unstructured triangular grids},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a1/}
}
TY  - JOUR
AU  - R. V. Zhalnin
AU  - V. F. Masyagin
AU  - V. F. Tishkin
TI  - Solving two-dimensional problems of gas dynamics using an implicit scheme for the discontinuous Galerkin method on unstructured triangular grids
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2022
SP  - 19
EP  - 32
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a1/
LA  - ru
ID  - SJVM_2022_25_1_a1
ER  - 
%0 Journal Article
%A R. V. Zhalnin
%A V. F. Masyagin
%A V. F. Tishkin
%T Solving two-dimensional problems of gas dynamics using an implicit scheme for the discontinuous Galerkin method on unstructured triangular grids
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2022
%P 19-32
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a1/
%G ru
%F SJVM_2022_25_1_a1
R. V. Zhalnin; V. F. Masyagin; V. F. Tishkin. Solving two-dimensional problems of gas dynamics using an implicit scheme for the discontinuous Galerkin method on unstructured triangular grids. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 25 (2022) no. 1, pp. 19-32. http://geodesic.mathdoc.fr/item/SJVM_2022_25_1_a1/

[1] Krasnov M. M., Kuchugov P. A., Ladonkina M. E., Tishkin V. F., “Razryvnyi metod Galerkina na trekhmernykh tetraedralnykh setkakh. Ispolzovanie operatornogo metoda programmirovaniya”, Matem. modelirovanie, 29:2 (2017), 3–22 | Zbl

[2] Bogdanov P. B., Gorobets A. V., Sukov S. A., “Adaptatsiya i optimizatsiya bazovykh operatsii gazodinamicheskogo algoritma na nestrukturirovannykh setkakh dlya raschetov na massivno-parallelnykh uskoritelyakh”, Zhurn. vychisl. matem. i mat. fiz., 53:8 (2013), 1360–1373 | DOI | MR | Zbl

[3] Simoncini V., Szyld D. B., “Flexible inner-outer Krylov subspace methods”, SIAM J. Numer. Anal., 40:6 (2003), 2219–2239 | DOI | MR | Zbl

[4] Naumov M. et al., “AmgX: a library for GPU accelerated algebraic multigrid and preconditioned iterative methods”, SIAM J. Sci. Comput., 37:5 (2015), 602–626 | DOI | MR

[5] Zhalnin R. V., Maksimkin A. V., Masyagin V. F. i dr., “Issledovanie poryadka tochnosti neyavnoi skhemy dlya metoda Galerkina s razryvnymi bazisnymi funktsiyami dlya resheniya zadach gazovoi dinamiki”, Zhurnal SVMO, 17:1 (2015), 48–54 | Zbl

[6] Zhalnin R. V., Maksimkin A. V., Masyagin V. F. i dr., “Ob ispolzovanii WENO-ogranichitelya v neyavnoi skheme dlya metoda Galerkina s razryvnymi bazisnymi funktsiyami”, Zhurnal SVMO, 17:3 (2015), 75–81 | MR | Zbl

[7] Anderson D., Tannekhill Dzh., Pletcher R., Vychislitelnaya gidromekhanika i teploobmen, V 2 tomakh, Mir, M., 1990 | MR

[8] Cockburn B., Shu C.-W., “The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems”, SIAM J. Numer. Anal., 35:6 (1998), 2440–2463 | DOI | MR | Zbl

[9] Bassi F. A., Rebay S., “A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations”, J. of Computational Physics, 131:2 (1997), 267–279 | DOI | MR | Zbl

[10] Roe P. L., “Approximate Riemann solvers, parameter vectors, and difference schemes”, J. of Computations Physics, 43 (1981), 357–378 | DOI | MR

[11] Holst T. L., Viscous Transonic Airfoil Workshop Compendium of Results, NASA Ames Research Center, California, Moffett Field, 1987

[12] Harris C. D., Two-dimensional Aerodynamic Characteristics of the NACA0012 Airfoil in the Langley 8-Foot Transonic Pressure Tunnel, NACA Technical Memorandum 81927, Langley Research Center, Hampton, 1981

[13] Zhalnin R. V., Veselova E. A., Deryugin Yu. N. i dr., “Paket programm LOGOS. Metodika povyshennogo poryadka tochnosti na blochno-strukturirovannykh setkakh s ispolzovaniem rekonstruktsii tipa WENO”, Sovremennye problemy nauki i obrazovaniya, 2012, no. 6 http://science-education.ru/ru/article/view?id=7329 | Zbl

[14] Cook P. H., McDonald M. A., Firmin M. C.P. Aerofoil RAE, Aerofoil RAE 2822 Pressure Distributions, and Boundary Layer and Wake Measurements, AGARD Report AR 138, 1979

[15] Bragin M. D., Kriksin Yu. A., Tishkin V. F., “Razryvnyi metod Galerkina s entropiinym ogranichitelem naklonov dlya uravnenii Eilera”, Matem. modelirovanie, 32:2 (2020), 113–128 | MR | Zbl