Method of variational interpolation in inverse problems of anomalous diffusion of fractional-differential type
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 393-408.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work considers problem of reconstruction of differential equations parameters, describing anomalous diffusion processes, on the base of known solutions. As a tool, is used the variational interpolation method elaborated by the authors earlier. The reconstruction time-dependence of diffusivity and determination of fractional time- and space-derivatives order in anomalous diffusion equation is demonstrated. There is shown a possibility of sufficient accuracy with insignificant computational expanses.
@article{SJVM_2021_24_4_a4,
     author = {V. A. Litvinov and V. V. Uchaikin},
     title = {Method of variational interpolation in inverse problems of anomalous diffusion of fractional-differential type},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {393--408},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a4/}
}
TY  - JOUR
AU  - V. A. Litvinov
AU  - V. V. Uchaikin
TI  - Method of variational interpolation in inverse problems of anomalous diffusion of fractional-differential type
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 393
EP  - 408
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a4/
LA  - ru
ID  - SJVM_2021_24_4_a4
ER  - 
%0 Journal Article
%A V. A. Litvinov
%A V. V. Uchaikin
%T Method of variational interpolation in inverse problems of anomalous diffusion of fractional-differential type
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 393-408
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a4/
%G ru
%F SJVM_2021_24_4_a4
V. A. Litvinov; V. V. Uchaikin. Method of variational interpolation in inverse problems of anomalous diffusion of fractional-differential type. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 393-408. http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a4/

[1] Uchaikin V. V., “Variatsionnyi metod interpolirovaniya yaderno-tekhnicheskikh raschetov”, Atomnaya energiya, 67 (1989), 54–55

[2] Marchuk G. I., Orlov V. V., “K teorii sopryazhennykh funktsii”, Neitronnaya fizika, Atomizdat, M., 1961, 30–45

[3] Uchaikin V. V., Litvinov V. A., “Variatsionnyi metod interpolirovaniya v teorii perenosa izluchenii”, Optika atmosfery i okeana, 2:1 (1989), 36–40

[4] Litvinov V. A., “Variatsionnoe interpolirovanie v probleme chuvstvitelnosti kharakteristik kaskadnykh protsessov”, Yadernaya fizika, 56:2 (1993), 244–254

[5] Uchaikin V. V., Litvinov V. A., “Variatsionnoe interpolirovanie funktsionalov v obratnykh zadachakh teorii perenosa”, Sib. zhurn. vychisl. matematiki, 22:3 (2019), 351–366

[6] Wei M.-B., Wu G.-C., “Variational iteration method for subdiffusion equations with the Riemann-Liouville derivatives”, Heat Transfer Research, 44:5 (2013), 409–415

[7] Wu G.-C., “Laplace transform overcoming principle drawbacks in application of the variational iteration method to fractional heat equations”, Termal Science, 16:4 (2012), 1257–1261

[8] Saberi-Nadjafi J., Ghassabzade F. A., “Variational iteration method for solving nonlinear differential-difference equations”, Australian Journal of Basic and Applied Sciences, 4:10 (2010), 4971–4975

[9] Huang D.-J., Li Y.-Q., “Variational iteration method for solving an inverse parabolic problem”, Fuzzy Information and Engineering and Decision, ed. Bing-Yuan Cao, 2016, 321–327

[10] Inc M., “The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method”, J. Math. Anal. Appl., 345:1 (2008), 476–484

[11] Molliq R. V., Noorani M. S.M., Hashim I., “Variational iteration method for fractional heat- and wave-like equations”, Nonlinear Analysis: Real World Applications, 10:3 (2009), 1854–1869

[12] Sakar M. G., Erdogan F., Yildirim A., “Variational iteration method for the time-fractional Fornberg-Whitham equation”, Comput. Math. Appl., 63:9 (2012), 1382–1388

[13] Hristov J., “An exercise with the He's variation iteration method to a fractional Bernulli equation arising in transient conduction with non-linear heat flux at the boundary”, Int. Rev. Chem. Eng., 4:5 (2012), 489–497

[14] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[15] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[16] Litvinov V. A., “Variatsionnoe interpolirovanie reshenii drobnykh differentsialnykh uravnenii”, Izvestiya vuzov. Fizika, 61:728 (2018), 39–44

[17] Ivaschenko D. S., Chislennye metody resheniya pryamykh i obratnykh zadach dlya uravneniya diffuzii drobnogo poryadka po vremeni, Diss. ... kand. fiz.-mat. nauk: 05.13.18, Institut matematiki SO RAN, Tomsk, 2008

[18] Litvinov V. A., Uchaikin V. V., “Variatsii tsennosti v probleme izucheniya shirokikh atmosfernykh livnei”, Izvestiya vuzov. Fizika, 29:2 (1986), 128