On an integro-differential fractional nonlinear Volterra-Caputo equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 365-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a nonlinear integro-differential Volterra equation with a fractional Caputo derivative. Based on techniques derived from a study of classical Volterra equations, namely Picard's iterative sequence and the product integration method, we propose a complete analytical and numerical study of this equation. Our study is closed by the development of two numerical examples.
@article{SJVM_2021_24_4_a2,
     author = {S. Guemar and H. Guebbai and S. Lemita},
     title = {On an integro-differential fractional nonlinear {Volterra-Caputo} equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {365--382},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a2/}
}
TY  - JOUR
AU  - S. Guemar
AU  - H. Guebbai
AU  - S. Lemita
TI  - On an integro-differential fractional nonlinear Volterra-Caputo equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 365
EP  - 382
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a2/
LA  - ru
ID  - SJVM_2021_24_4_a2
ER  - 
%0 Journal Article
%A S. Guemar
%A H. Guebbai
%A S. Lemita
%T On an integro-differential fractional nonlinear Volterra-Caputo equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 365-382
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a2/
%G ru
%F SJVM_2021_24_4_a2
S. Guemar; H. Guebbai; S. Lemita. On an integro-differential fractional nonlinear Volterra-Caputo equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 4, pp. 365-382. http://geodesic.mathdoc.fr/item/SJVM_2021_24_4_a2/

[1] Guebbai H., Aissaoui M. Z., Debbar I., Khalla B., “Analytical and numerical study for an integro-differential nonlinear Volterra equation”, Applied Mathematics and Computation, 229 (2014), 367–373

[2] Linz P., Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985

[3] Brunner H., “The numerical treatment of Volterra integro-differential equations with unbounded delay”, J. Comp. Appl. Math., 28 (1989), 5–23

[4] Babaaghaie A., Maleknejad K., “Numerical solutions of nonlinear two-dimensional partial Volterra integro-differential equations by Haar wavelet”, J. Comp. Appl. Math., 317 (2017), 643–651

[5] Ghiat M., Guebbai H., “Analytical and numerical study for an integro-differential nonlinear Volterra equation with weakly singular kernel”, Comp. Appl. Math., 37:4 (2018), 4661–4674

[6] Segni S., Ghiat M., Guebbai H., “New approximation method for Volterra nonlinear integro-differential equation”, Asian-European J. of Mathematics, 12:1 (2019), 1950016 | DOI

[7] Touati S., Lemita S., Ghiat M., Aissaoui M. Z., “Solving a nonlinear Volterra-Fredholm integro-differential equation with weakly singular kernels”, Fasciculi Mathematici, 62:1 (2019), 155–168

[8] Salah S., Guebbai H., Lemita S., Aissaoui M. Z., “Solution of an integro-differential nonlinear equation of volterra arising of earthquake model”, Boletim da Sociedade Paranaense de Matematica, 2020 | DOI

[9] Kilbas A. A., Srivastava H. H., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science, 2006

[10] Guebbai H., Ghiat M., “New conformable fractional derivative definition for positive and increasing functions and its generalization”, Advances in Dynamical Systems and Applications, 11:2 (2016), 105–111

[11] Lipschutz S., General Topology, Schaum's Outlines, McGraw-Hill, New York, 1965

[12] Gu Z., Guo X., Sun D., “Series expansion method for weakly singular Volterra integral equations”, Applied Numerical Mathematics, 105:C (2016), 112–123

[13] Zhu L., Wang Y., “Numerical solutions of Volterra integral equation with weakly singular kernel using SCW method”, Applied Mathematics and Computation, 260:C (2015), 63–70

[14] Atkinson K., Han W., Theoretical Numerical Analysis: A Functional Analysis Framework, Springer-Verlag, New York, 2001

[15] Khalil R., Al Horani M., Yousef A., Sababheh M., “A new definition of fractional derivative”, J. Comp. Appl. Math., 264 (2014), 65–70