An approximate solution of singular integral equations using the Chebyshev series on the class of functions vanishing at one end and turning into infinity at the other end of the integration interval
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 331-341.

Voir la notice de l'article provenant de la source Math-Net.Ru

Computational schemes for an approximate solution of a singular integral equation of the first kind, bounded at one end and not bounded at the other end of the integration interval are constructed $[-1,1]$. The solution of the equation is sought for in the form of a series in the Chebyshev polynomials of the third and the fourth kinds. The kernel and the right-hand side of the equation decompose into series with the use of the Chebyshev polynomials of the third and the fourth kinds, whose coefficients are approximately calculated by the Gaussian quadrature formulas, i.e. the highest algebraic degree of accuracy. For the coefficients of the expansion of the Chebyshev polynomials, exact values in the series are found. The coefficients of the expansion of the unknown function, i.e. solutions of the equation, are found from the solution to systems of linear algebraic equations. To justify the constructed computing schemes, the methods of functional analysis and the theory of orthogonal polynomials are used. When the existence condition for the given functions of the derivatives up to some order belonging to the Holder class is satisfied, the calculation error is estimated and the order of its turning into zero is given.
@article{SJVM_2021_24_3_a7,
     author = {Sh. S. Khubezhty},
     title = {An approximate solution of singular integral equations using the {Chebyshev} series on the class of functions vanishing at one end and turning into infinity at the other end of the integration interval},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {331--341},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a7/}
}
TY  - JOUR
AU  - Sh. S. Khubezhty
TI  - An approximate solution of singular integral equations using the Chebyshev series on the class of functions vanishing at one end and turning into infinity at the other end of the integration interval
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 331
EP  - 341
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a7/
LA  - ru
ID  - SJVM_2021_24_3_a7
ER  - 
%0 Journal Article
%A Sh. S. Khubezhty
%T An approximate solution of singular integral equations using the Chebyshev series on the class of functions vanishing at one end and turning into infinity at the other end of the integration interval
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 331-341
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a7/
%G ru
%F SJVM_2021_24_3_a7
Sh. S. Khubezhty. An approximate solution of singular integral equations using the Chebyshev series on the class of functions vanishing at one end and turning into infinity at the other end of the integration interval. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 331-341. http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a7/

[1] Muskhelishvili N.I., Singulyarnye integralnye uravneniya, Nauka, M., 1966 | MR

[2] Lifanov I.K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, Yanus, M., 1995

[3] Boikov I.V., Priblizhennye metody resheniya singulyarnykh integralnykh uravnenii, Izd-vo Penzenskogo gosudarstvennogo universiteta, Penza, 2004

[4] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M., 1983 | MR

[5] Besaeva Z.V., Khubezhty Sh.S., “Priblizhennoe reshenie singulyarnogo integralnogo uravneniya ryadami Chebysheva”, Vladikavkazskii matem. zhurn., 18:4 (2016), 15–22 | MR | Zbl

[6] Khubezhty Sh.S., Besaeva Z.V., “Priblizhennoe reshenie singulyarnogo integralnogo uravneniya, ne ogranichennogo na kontsakh integrirovaniya, s primeneniem ryadov Chebysheva”, Izv. vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2017, no. 2, 26–31 | MR

[7] Khubezhty Sh.S., Kvadraturnye formuly dlya singulyarnykh integralov i nekotorye ikh primeneniya, YuMI VNTs RAN, Vladikavkaz, 2011

[8] Prudnikov A.P., Brychkov Yu.A., Marichev O.N., Integraly i ryady, Nauka, M., 1987 | MR

[9] Krylov V.I., Priblizhennoe vychislenie integralov, Nauka, M., 1967

[10] Boikov I.V., Boikova A.I., Semov M.A., “Priblizhennoe reshenie gipersingulyarnykh integralnykh uravnenii pervogo roda”, Izv. vuzov. Privolzhskii region. Fiziko-matematicheskie nauki. Matematika, 2015, no. 3(35), 11–27

[11] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1977 | MR