Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2021_24_3_a7, author = {Sh. S. Khubezhty}, title = {An approximate solution of singular integral equations using the {Chebyshev} series on the class of functions vanishing at one end and turning into infinity at the other end of the integration interval}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {331--341}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a7/} }
TY - JOUR AU - Sh. S. Khubezhty TI - An approximate solution of singular integral equations using the Chebyshev series on the class of functions vanishing at one end and turning into infinity at the other end of the integration interval JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2021 SP - 331 EP - 341 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a7/ LA - ru ID - SJVM_2021_24_3_a7 ER -
%0 Journal Article %A Sh. S. Khubezhty %T An approximate solution of singular integral equations using the Chebyshev series on the class of functions vanishing at one end and turning into infinity at the other end of the integration interval %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2021 %P 331-341 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a7/ %G ru %F SJVM_2021_24_3_a7
Sh. S. Khubezhty. An approximate solution of singular integral equations using the Chebyshev series on the class of functions vanishing at one end and turning into infinity at the other end of the integration interval. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 331-341. http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a7/
[1] Muskhelishvili N.I., Singulyarnye integralnye uravneniya, Nauka, M., 1966 | MR
[2] Lifanov I.K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, Yanus, M., 1995
[3] Boikov I.V., Priblizhennye metody resheniya singulyarnykh integralnykh uravnenii, Izd-vo Penzenskogo gosudarstvennogo universiteta, Penza, 2004
[4] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M., 1983 | MR
[5] Besaeva Z.V., Khubezhty Sh.S., “Priblizhennoe reshenie singulyarnogo integralnogo uravneniya ryadami Chebysheva”, Vladikavkazskii matem. zhurn., 18:4 (2016), 15–22 | MR | Zbl
[6] Khubezhty Sh.S., Besaeva Z.V., “Priblizhennoe reshenie singulyarnogo integralnogo uravneniya, ne ogranichennogo na kontsakh integrirovaniya, s primeneniem ryadov Chebysheva”, Izv. vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2017, no. 2, 26–31 | MR
[7] Khubezhty Sh.S., Kvadraturnye formuly dlya singulyarnykh integralov i nekotorye ikh primeneniya, YuMI VNTs RAN, Vladikavkaz, 2011
[8] Prudnikov A.P., Brychkov Yu.A., Marichev O.N., Integraly i ryady, Nauka, M., 1987 | MR
[9] Krylov V.I., Priblizhennoe vychislenie integralov, Nauka, M., 1967
[10] Boikov I.V., Boikova A.I., Semov M.A., “Priblizhennoe reshenie gipersingulyarnykh integralnykh uravnenii pervogo roda”, Izv. vuzov. Privolzhskii region. Fiziko-matematicheskie nauki. Matematika, 2015, no. 3(35), 11–27
[11] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1977 | MR