Solution of the inverse boundary value problem of heat transfer for an inhomogeneous ball
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 313-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the problem of determining the boundary condition in the heat conduction equation for composite materials. Mathematically this problem is reduced to the equation of heat conduction in spherical coordinates for an inhomogeneous ball. The temperature inside the ball is assumed to be unknown for an infinite time interval. To find it, the temperature of the heat flow in the media interface is measured at the point $r=r_0$. An analytical study of the direct problem is carried out, which makes it possible to give a rigorous formulation of the inverse problem and to determine the functional spaces in which it is natural to solve the inverse problem. The main difficulty to be solved, is to obtain an error estimate of the approximate solution. The projection regularization method is used to estimate the modulus of conditional correctness. This allows one to obtain the order-accurate estimates.
@article{SJVM_2021_24_3_a6,
     author = {V. P. Tanana and B. A. Markov and A. I. Sidikova},
     title = {Solution of the inverse boundary value problem of heat transfer for an inhomogeneous ball},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {313--330},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a6/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - B. A. Markov
AU  - A. I. Sidikova
TI  - Solution of the inverse boundary value problem of heat transfer for an inhomogeneous ball
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 313
EP  - 330
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a6/
LA  - ru
ID  - SJVM_2021_24_3_a6
ER  - 
%0 Journal Article
%A V. P. Tanana
%A B. A. Markov
%A A. I. Sidikova
%T Solution of the inverse boundary value problem of heat transfer for an inhomogeneous ball
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 313-330
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a6/
%G ru
%F SJVM_2021_24_3_a6
V. P. Tanana; B. A. Markov; A. I. Sidikova. Solution of the inverse boundary value problem of heat transfer for an inhomogeneous ball. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 313-330. http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a6/

[1] Alifanov O.M., Artyukhin E.A., Rumyantsev S.V., Ekstremalnye metody resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena, Nauka, M., 1988

[2] Karslou G., Eger D., Teploprovodnost tverdykh tel, Nauka, M., 1964

[3] Chudnovskii A.F., Teplofizika pochv, Nauka, M., 1976

[4] Tikhonov A.N., Leonov A.S., Yagola A.G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995

[5] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979

[6] Denisov V.Ya., Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994 | MR

[7] Leonov A.S., Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, Librokom, M., 2013

[8] Yagola A.G., Stepanova I.E., Titarenko V.N., Van Ya., Obratnye zadachi i metody ikh resheniya. Prilozheniya k geofizike, Binom. Laboratoriya znanii, M., 2014

[9] Tikhonov A.N., Glasko V.B., “K voprosu o metodakh opredeleniya temperatury poverkhnosti tela”, Zhurn. vychisl. matem. i mat. fiziki, 7:4 (1967), 910–914 | Zbl

[10] Lavrentev M.M., Romanov V.G., Shishatskii S.P., Nekotorye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[11] Kabanikhin S.I., Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009

[12] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978

[13] Landis E.M., “Nekotorye voprosy kachestvennoi teorii ellipticheskikh i parabolicheskikh uravnenii”, Uspekhi mat. nauk, 2:1 (1959), 21–85

[14] Tanana V.P., “O svedenii obratnoi granichnoi zadachi k posledovatelnomu resheniyu dvukh nekorrektnykh zadach”, Sib. zhurn. vychisl. matematiki, 23:2 (2020), 219–232

[15] Fikhtengolts G.M., Osnovy matematicheskogo analiza, v. 2, Nauka. Fizmatlit, M., 1968

[16] Tanana V., Sidikova A., Optimal Methods for Ill-Posed Problems with Applications to Heat Conduction, De Gruyter, 2018 | MR | Zbl