Solving of a system of linear algebraic equations with a three-diagonal matrix: a new look at the Cramer method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 289-298.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the numerical solution of a system of linear algebraic equations with a three-diagonal matrix, a recursive version of the Cramer method is proposed. This method does not require additional restrictions on the system matrix, similar to those formulated for the sweep method. The results of numerical experiments are presented on a large set of test problems, a comparative analysis of the effectiveness of the proposed methodology and the corresponding algorithms is given.
@article{SJVM_2021_24_3_a4,
     author = {S. K. Kydyraliev and S. N. Sklyar and A. B. Urdaletova},
     title = {Solving of a system of linear algebraic equations with a three-diagonal matrix: a new look at the {Cramer} method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {289--298},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a4/}
}
TY  - JOUR
AU  - S. K. Kydyraliev
AU  - S. N. Sklyar
AU  - A. B. Urdaletova
TI  - Solving of a system of linear algebraic equations with a three-diagonal matrix: a new look at the Cramer method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 289
EP  - 298
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a4/
LA  - ru
ID  - SJVM_2021_24_3_a4
ER  - 
%0 Journal Article
%A S. K. Kydyraliev
%A S. N. Sklyar
%A A. B. Urdaletova
%T Solving of a system of linear algebraic equations with a three-diagonal matrix: a new look at the Cramer method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 289-298
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a4/
%G ru
%F SJVM_2021_24_3_a4
S. K. Kydyraliev; S. N. Sklyar; A. B. Urdaletova. Solving of a system of linear algebraic equations with a three-diagonal matrix: a new look at the Cramer method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 3, pp. 289-298. http://geodesic.mathdoc.fr/item/SJVM_2021_24_3_a4/

[1] Faddeev D.K., Faddeeva V.N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1963 | MR

[2] Voevodin V.V., Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977

[3] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984

[4] Samarskii A.A., Gulin A.V., Chislennye metody, Nauka, M., 1989

[5] Samarskii A.A., Nikolaev E.S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[6] Marchuk G.I., Sarkisyan A.S., Matematicheskoe modelirovanie tsirkulyatsii okeana, Nauka, M., 1988 | MR

[7] Kurosh A.G., Kurs vysshei algebry, Nauka, M., 1971 | MR

[8] Ilin A.M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[9] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983

[10] Ilin V.P., “Pryamoi analiz ustoichivosti metoda progonki”, Aktualnye problemy vychislitelnoi matematiki i matematicheskogo modelirovaniya, Nauka, Novosibirsk, 1985, 189–201