The errors investigation in problems for solving simple equations of mathematical physics by iterative methods
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 2, pp. 131-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

The error caused by the inaccuracy of the equation system solution by iterative methods has been investigated. The upper error estimate for the axially symmetric heat equation is found in the accumulation process in several time steps. The upper estimate shows the linear dependence of the error on the threshold value of the limiting criterion for the iterations number, the quadratic error growth from the range partitions number, and its independence of the time partitions number. The computing experiment shows a good correspondence of the obtained estimate to real errors with boundary and initial conditions of various types. The quadratic error growth for the Laplace equation, caused by the accuracy limitation for applying the iteration method, on the number of range partitions $n$, is empirically found. A similar error growth for the biharmonic equation is found in proportion to $n^4$.
@article{SJVM_2021_24_2_a1,
     author = {V. P. Zhitnikov and N. M. Sherykhalina and R. R. Muksimova},
     title = {The errors investigation in problems for solving simple equations of mathematical physics by iterative methods},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {131--144},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a1/}
}
TY  - JOUR
AU  - V. P. Zhitnikov
AU  - N. M. Sherykhalina
AU  - R. R. Muksimova
TI  - The errors investigation in problems for solving simple equations of mathematical physics by iterative methods
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 131
EP  - 144
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a1/
LA  - ru
ID  - SJVM_2021_24_2_a1
ER  - 
%0 Journal Article
%A V. P. Zhitnikov
%A N. M. Sherykhalina
%A R. R. Muksimova
%T The errors investigation in problems for solving simple equations of mathematical physics by iterative methods
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 131-144
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a1/
%G ru
%F SJVM_2021_24_2_a1
V. P. Zhitnikov; N. M. Sherykhalina; R. R. Muksimova. The errors investigation in problems for solving simple equations of mathematical physics by iterative methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 2, pp. 131-144. http://geodesic.mathdoc.fr/item/SJVM_2021_24_2_a1/

[1] Zhitnikov V.P., Sherykhalina N.M., Muksimova R.R., “The peculiarities of error accumulation in solving problems for simple equations of mathematical physics by finite difference methods”, Numerical Analysis and Applications, 9:2 (2016), 107–117 | DOI | MR | Zbl

[2] Idrisova G.R., Kovaleva L.A., Mavletov M.V. et al., “Mathematical simulation of two-phase fluid flow through a water-flooded porous reservoir with sediment formation”, Fluid Dyn., 46 (2011), 90–96 | DOI | MR | Zbl

[3] Tukhbatova E.R., Musin A.A., Yulmukhametova R.R., Kovaleva L.A., “Issledovanie vliyaniya teplovoi konvekcii na process razrusheniya vodoneftyanoi emul'sii pri SVCH vozdeistvii”, Vestnik Bashkirskogo universiteta. Matematika i mekhanika, 22:4 (2017), 930–935

[4] Sayakhov F. L., Kovaleva L. A., Nasyrov N. M., “Heat and mass transfer in the well-stratum system under the electromagnetic action on massive oil deposits”, J. of Engineering Physics and Thermophysics, 75:1 (2002), 126–133 | DOI

[5] Sayakhov F.L., Kovaleva L.A., Nasyrov H.M., “Teplomassoperenos v sisteme “skvazhina–plast” pri nagnetanii rastvoritelya s odnovremennym elektromagnitnym vozdeistviem”, Izv. vysshikh uchebnykh zavedenii. Neft' i gaz, 1998, no. 4, 47–55

[6] Nigmatulin R. I., Sayakhov F. L., Kovaleva L. A., “Cross transport phenomena in disperse systems interacting with a high-frequency electromagnetic field”, Doklady Physics, 46:3 (2001), 215–218 | DOI

[7] Kamaltdinov I.M., Kovaleva L.A., Khismatullina F.S., Galimbekov A.D., “Vliyanie vysokochastotnogo elektromagnitnogo polya na adsorbcionnye processy v poristoi srede”, Neftyanoe khozyaistvo, 2013, no. 8, 90–92

[8] Amosov A.L, Dubinskni Yu.L., Kopchenova N.V., Vychislitel'nye metody dlya inzhenerov, Ucheb. posobie, Vyssh. shk., M., 1994

[9] Zhitnikov V.P., Sherykhalina N.M., “Utochnenie reshenii slozhnykh vychislitel'nykh zadach s pomoshch'yu postprocessornoi obrabotki chislennykh rezul'tatov”, Vychislitel'nye tekhnologii, 13:6 (2008), 61–65 | Zbl

[10] Zhitnikov V.P., Sherykhalina N.M., Porechnyi S.S., “Ob odnom podkhode k prakticheskoi ocenke pogreshnostei chislennykh rezul'tatov”, Nauchno-tekhnicheskie vedomosti SPbGPU, 80:3 (2009), 105–110

[11] Zhitnikov V. P., Sherykhalina N. M., Sokolova A. A., “Problem of reliability justification of computation error estimates”, Mediterranean J. of Soc. Sci., 6:2 (2015), 65–78

[12] Gupta M. M., “Spectrum transformation for divergent iterations”, NASA technical memorandum ICOMP-91-02, 1991, NASA-TM-103745