On the optimal approximation of geophysical fields
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 17-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, optimal methods of approximation of some geophysical fields involving gravitational and heat fields are considered. A review of results on this problem is presented. We have developed the algorithm of approximation of multidimensional heat fields which are described by heat equation with constant coefficients. In order to do that, we introduce classes of functions that include solutions of heat equations, and continuous splines uniformly approximating the functions from these classes in the whole domain of definition. We give the upper bounds for the Kolmogorov diameters of the introduced classes of functions.For a wider class of the introduced classes of functions, the Kolmogorov diameters is estimated from below.
@article{SJVM_2021_24_1_a2,
     author = {I. V. Boikov and V. A. Ryazantsev},
     title = {On the optimal approximation of geophysical fields},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {17--34},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a2/}
}
TY  - JOUR
AU  - I. V. Boikov
AU  - V. A. Ryazantsev
TI  - On the optimal approximation of geophysical fields
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2021
SP  - 17
EP  - 34
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a2/
LA  - ru
ID  - SJVM_2021_24_1_a2
ER  - 
%0 Journal Article
%A I. V. Boikov
%A V. A. Ryazantsev
%T On the optimal approximation of geophysical fields
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2021
%P 17-34
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a2/
%G ru
%F SJVM_2021_24_1_a2
I. V. Boikov; V. A. Ryazantsev. On the optimal approximation of geophysical fields. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 17-34. http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a2/

[1] K. I. Babenko, “O nekotorykh zadachakh teorii priblizhenii i chislennogo analiza”, Uspekhi matematicheskikh nauk, 40:1 (1985), 3–28 | MR

[2] K. I. Babenko, Osnovy chislennogo analiza, Nauka, M., 1986 | MR

[3] I. V. Boikov, “Optimal'nye po tochnosti algoritmy vychisleniya integralov”, Mezhvuz. sb. nauch. tr., Optimal'nye metody vychislenii i ikh primenenie, 8, Izv-vo Penzenskogo politekhnicheskogo instituta, Penza, 1987, 4–22 | MR

[4] I. V. Boikov, “Approksimatsiya nekotorykh klassov funktsii lokal'nymi splainami”, Zhurn. vychisl. matem. i mat. fiziki, 38:1 (1998), 25–33 | MR

[5] I. V. Boikov, Optimal'nye metody priblizheniya funktsii i vychisleniya integralov, Izd-vo Penzenskogo gosudarstvennogo universiteta, Penza, 2007

[6] G. M. Vainikko, “O gladkosti reshenii mnogomernykh slabosingulyarnykh integral'nykh uravnenii”, Matematicheskii sbornik, 180:12 (1989), 1709–1726

[7] I. V. Boikov, Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov, v. 2, Gipersingulyarnye integraly, Izd-vo Penzenskogo gosudarstvennogo universiteta, Penza, 2009

[8] I. V. Boikov, A. I. Boikova, Priblizhennye metody resheniya pryamykh i obratnykh zadach gravirazvedki, Izd-vo Penzenskogo gosudarstvennogo universiteta, Penza, 2013

[9] I. V. Boykov, Optimal approximation and Kolmogorov widths estimates for certain singular classes related to equations of mathematical physics, arXiv: 1303.0416

[10] M. SH. Birman, M. Z. Solomyak, “Kusochno-polinomial'nye priblizheniya funktsii klassov $W^\alpha_p$”, Matematicheskii sbornik, 73(115):3 (1967), 331–355 | Zbl

[11] A. El Kolli, “$n$-ieme epaisseur dans les espaces de Sobolev”, J. Approximation Theory, 10:3 (1974), 268–294 | DOI | MR | Zbl

[12] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978 | MR

[13] A. A. Vasil'eva, “Otsenki poperechnikov vesovykh sobolevskikh klassov”, Matematicheskii sbornik, 201:7 (2010), 15–52 | Zbl

[14] A. A. Vasil'eva, “Kolmogorov and linear widths of the weighted Besov classes with singularity at the origin”, J. Approx. Theory, 167 (2013), 1–41 | DOI | MR | Zbl

[15] I. V. Boikov, A. N. Tynda, “Poperechniki sobolevskikh klassov funktsii s osobennostyami na granitse”, Izv. vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2013, no. 1, 61–81

[16] A. A. Vasil'eva, “Estimates for the Kolmogorov widths of weighted Sobolev classes on a domain with cusp: case of weights that are functions of the distance from the boundary”, Eurasian Math. J., 8:4 (2017), 102–106 | MR | Zbl

[17] A. A. Vasil'eva, “Poperechniki vesovykh klassov Soboleva na oblasti s pikom”, Matematicheskii sbornik, 206:10 (2015), 37–70 | Zbl

[18] I. G. Petrovskii, Lektsii ob uravneniyakh s chastnymi proizvodnymi, GIFML, M., 1961 | MR

[19] N. S. Koshlyakov, Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970

[20] L. V. Goncharov, Teoriya interpolirovaniya i priblizheniya funktsii, GITTL, M., 1954 | MR

[21] G. G. Lorentz, Approximation of functions, Chelsia Publication Company, New York, 1986 | MR | Zbl