Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2021_24_1_a2, author = {I. V. Boikov and V. A. Ryazantsev}, title = {On the optimal approximation of geophysical fields}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {17--34}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a2/} }
I. V. Boikov; V. A. Ryazantsev. On the optimal approximation of geophysical fields. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 24 (2021) no. 1, pp. 17-34. http://geodesic.mathdoc.fr/item/SJVM_2021_24_1_a2/
[1] K. I. Babenko, “O nekotorykh zadachakh teorii priblizhenii i chislennogo analiza”, Uspekhi matematicheskikh nauk, 40:1 (1985), 3–28 | MR
[2] K. I. Babenko, Osnovy chislennogo analiza, Nauka, M., 1986 | MR
[3] I. V. Boikov, “Optimal'nye po tochnosti algoritmy vychisleniya integralov”, Mezhvuz. sb. nauch. tr., Optimal'nye metody vychislenii i ikh primenenie, 8, Izv-vo Penzenskogo politekhnicheskogo instituta, Penza, 1987, 4–22 | MR
[4] I. V. Boikov, “Approksimatsiya nekotorykh klassov funktsii lokal'nymi splainami”, Zhurn. vychisl. matem. i mat. fiziki, 38:1 (1998), 25–33 | MR
[5] I. V. Boikov, Optimal'nye metody priblizheniya funktsii i vychisleniya integralov, Izd-vo Penzenskogo gosudarstvennogo universiteta, Penza, 2007
[6] G. M. Vainikko, “O gladkosti reshenii mnogomernykh slabosingulyarnykh integral'nykh uravnenii”, Matematicheskii sbornik, 180:12 (1989), 1709–1726
[7] I. V. Boikov, Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov, v. 2, Gipersingulyarnye integraly, Izd-vo Penzenskogo gosudarstvennogo universiteta, Penza, 2009
[8] I. V. Boikov, A. I. Boikova, Priblizhennye metody resheniya pryamykh i obratnykh zadach gravirazvedki, Izd-vo Penzenskogo gosudarstvennogo universiteta, Penza, 2013
[9] I. V. Boykov, Optimal approximation and Kolmogorov widths estimates for certain singular classes related to equations of mathematical physics, arXiv: 1303.0416
[10] M. SH. Birman, M. Z. Solomyak, “Kusochno-polinomial'nye priblizheniya funktsii klassov $W^\alpha_p$”, Matematicheskii sbornik, 73(115):3 (1967), 331–355 | Zbl
[11] A. El Kolli, “$n$-ieme epaisseur dans les espaces de Sobolev”, J. Approximation Theory, 10:3 (1974), 268–294 | DOI | MR | Zbl
[12] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978 | MR
[13] A. A. Vasil'eva, “Otsenki poperechnikov vesovykh sobolevskikh klassov”, Matematicheskii sbornik, 201:7 (2010), 15–52 | Zbl
[14] A. A. Vasil'eva, “Kolmogorov and linear widths of the weighted Besov classes with singularity at the origin”, J. Approx. Theory, 167 (2013), 1–41 | DOI | MR | Zbl
[15] I. V. Boikov, A. N. Tynda, “Poperechniki sobolevskikh klassov funktsii s osobennostyami na granitse”, Izv. vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2013, no. 1, 61–81
[16] A. A. Vasil'eva, “Estimates for the Kolmogorov widths of weighted Sobolev classes on a domain with cusp: case of weights that are functions of the distance from the boundary”, Eurasian Math. J., 8:4 (2017), 102–106 | MR | Zbl
[17] A. A. Vasil'eva, “Poperechniki vesovykh klassov Soboleva na oblasti s pikom”, Matematicheskii sbornik, 206:10 (2015), 37–70 | Zbl
[18] I. G. Petrovskii, Lektsii ob uravneniyakh s chastnymi proizvodnymi, GIFML, M., 1961 | MR
[19] N. S. Koshlyakov, Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970
[20] L. V. Goncharov, Teoriya interpolirovaniya i priblizheniya funktsii, GITTL, M., 1954 | MR
[21] G. G. Lorentz, Approximation of functions, Chelsia Publication Company, New York, 1986 | MR | Zbl