Sensitivity of functionals of the solution of a variational
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 457-470.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the mathematical model of the sea thermodynamics, developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences, the problem of variational data assimilation is considered, aimed at simultaneous reconstruction of the sea surface heat flux and the initial state of the model. The sensitivity of functionals with respect to observational data in the considered problem of variational assimilation is studied, and the results of numerical experiments for the model of the Baltic Sea dynamics are presented.
@article{SJVM_2020_23_4_a7,
     author = {V. P. Shutyaev and E. I. Parmuzin},
     title = {Sensitivity of functionals of the solution of a variational},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {457--470},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a7/}
}
TY  - JOUR
AU  - V. P. Shutyaev
AU  - E. I. Parmuzin
TI  - Sensitivity of functionals of the solution of a variational
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 457
EP  - 470
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a7/
LA  - ru
ID  - SJVM_2020_23_4_a7
ER  - 
%0 Journal Article
%A V. P. Shutyaev
%A E. I. Parmuzin
%T Sensitivity of functionals of the solution of a variational
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 457-470
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a7/
%G ru
%F SJVM_2020_23_4_a7
V. P. Shutyaev; E. I. Parmuzin. Sensitivity of functionals of the solution of a variational. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 457-470. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a7/

[1] G. I. Marchuk, Adjoint Equations and Analysis of Complex Systems, Kluwer, Dordrecht, 1995 | MR | Zbl

[2] J. L. Lions, Contr-ole Optimal des Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968 | MR

[3] Y. K. Sasaki, “An objective analysis based on the variational method”, J. Meteor. Soc. Japan, 36 (1958), 77–88 | DOI

[4] V. V. Penenko, N. N. Obraztsov, “Variacionnyi metod soglasovaniya polei meteorologicheskikh elementov”, Meteorologiya i gidrologiya, 1976, no. 11, 1–11

[5] V. V. Penenko, Metody chislennogo modelirovaniya atmosfernykh processov, Gidrometeoizdat, L., 1981 | MR

[6] F. X. Le Dimet, O. Talagrand, “Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects”, Tellus A: Dynamic Meteorology and Oceanography, 38:2 (1986), 97–110 | DOI

[7] V. I. Agoshkov, Metody optimal'nogo upravleniya i sopryazhennykh uravnenii v zadachakh matematicheskoi fiziki, IVM RAN, M., 2003

[8] K. Mogensen, M. A. Balmaseda, A. T. Weaver, M. Marti, A. Vidard, “NEMOVAR: a variational data assimilation system for the NEMO ocean model”, ECMWF Newsletter, 120 (2009), 17–22

[9] F. X. Le Dimet, V. Shutyaev, “On deterministic error analysis in variational data assimilation”, Nonlinear Processes in Geophysics, 12 (2005), 481–490 | DOI

[10] I. Gejadze, F. X. Le Dimet, V. P. Shutyaev, “On analysis error covariances in variational data assimilation”, SIAM J. Sci. Comput., 30:4 (2008), 1847–1874 | DOI | MR

[11] I. Gejadze, F. X. Le Dimet, V. P. Shutyaev, “On optimal solution error covariances in variational data assimilation problems”, J. Comp. Phys., 229 (2010), 2159–2178 | DOI | MR | Zbl

[12] I. Gejadze, V. P. Shutyaev, F. X. Le Dimet, “Analysis error covariance versus posterior covariance in variational data assimilation”, Quarterly J. of the Royal Meteorological Society, 139 (2013), 1826–1841 | DOI | MR

[13] Agoshkov V.I., Parmuzin E.I., Shutyaev V.P., “Observational data assimilation in the problem of Black Sea circulation and sensitivity analysis of its solution”, Izvestiya, Atmospheric and Oceanic Physics, 49:6 (2013), 592–602 | DOI | MR

[14] Shutyaev V.P., Parmuzin E.I., “Sensitivity of functionals to observation data in a variational assimilation problem for a sea thermodynamics model”, Numerical Analysis and Applications, 12:2 (2019), 191–201 | DOI | MR | MR

[15] V. V. Alekseev, V. B. Zalesnyi, “Chislennaya model' krupnomasshtabnoi dinamiki okeana”, Vychislitel'nye processy i sistemy, Nauka, M., 1993, 232–253

[16] G. I. Marchuk, V. P. Dymnikov, V. B. Zalesnyi, Matematicheskie modeli v geofizicheskoi gidrodinamike i chislennye metody ikh realizacii, Gidrometeoizdat, L., 1987 | MR

[17] V. I. Agoshkov, A. V. Gusev, N. A. Diansky, R. V. Oleinikov, “An algorithm for the solution of the ocean hydrothermodynamics problem with variational assimilation of the sea level function data”, Russ. J. Numer. Anal. Math. Modelling, 22:2 (2007), 1–10 | MR

[18] Agoshkov V.I., Parmuzin E.I., Shutyaev V.P., “Numerical algorithm for variational assimilation of sea surface temperature data”, Comp. Math. Math. Physics, 48:8 (2008), 1293–1312 | DOI | MR | Zbl

[19] V. B. Zalesny, A. V. Gusev, V. O. Ivchenko, R. Tamsalu, R. Aps, “Numerical model of the Baltic Sea circulation”, Russ. J. Numer. Anal. Math. Modelling, 28:1 (2013), 85–100 | DOI | MR | Zbl

[20] Tikhonov A.N., “On the regularization of ill-posed problems”, Dokl. Akad. Nauk SSSR, 153:1 (1963), 49–52 | MR | Zbl | Zbl

[21] D. G. Cacuci, “Sensitivity theory for nonlinear systems: II. Extensions to additional classes of responses”, J. Math. Phys., 22 (1981), 2803–2812 | DOI | MR

[22] V. P. Shutyaev, Operatory upravleniya i iteracionnye algoritmy v zadachakh variacionnogo usvoeniya dannykh, Nauka, M., 2001

[23] V. B. Zalesny, G. I. Marchuk, V. I. Agoshkov et al., “Numerical simulation of large-scale ocean circulation based on multicomponent splitting method”, Russ. J. Numer. Anal. Math. Modelling, 25:6 (2010), 581–609 | DOI | MR | Zbl

[24] V. I. Agoshkov, E. I. Parmuzin, V. B. Zalesny et al., “Variational assimilation of observation data in the mathematical model of the Baltic Sea dynamics”, Russ. J. Numer. Anal. Math. Modelling, 30:4 (2015), 203–212 | DOI | MR | Zbl

[25] V. I. Agoshkov, E. I. Parmuzin, N. B. Zakharova, V. P. Shutyaev, “Variational assimilation with covariance matrices of observation data errors for the model of the Baltic Sea dynamics”, Russ. J. Numer. Anal. Math. Modelling, 33:3 (2018), 149–160 | DOI | MR | Zbl

[26] N. B. Zakharova, S. A. Lebedev, “Interpolyaciya operativnykh dannykh buev ARGO dlya assimilyacii dannykh v modeli cirkulyacii Mirovogo okeana”, Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa, 7:4 (2010), 104–111

[27] N. B. Zakharova, V. I. Agoshkov, E. I. Parmuzin, “The new method of ARGO buoys system observation data interpolation”, Russ. J. Numer. Anal. Math. Modelling, 28:1 (2013), 67–84 | DOI | MR | Zbl