Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_4_a7, author = {V. P. Shutyaev and E. I. Parmuzin}, title = {Sensitivity of functionals of the solution of a variational}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {457--470}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a7/} }
TY - JOUR AU - V. P. Shutyaev AU - E. I. Parmuzin TI - Sensitivity of functionals of the solution of a variational JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 457 EP - 470 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a7/ LA - ru ID - SJVM_2020_23_4_a7 ER -
V. P. Shutyaev; E. I. Parmuzin. Sensitivity of functionals of the solution of a variational. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 457-470. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a7/
[1] G. I. Marchuk, Adjoint Equations and Analysis of Complex Systems, Kluwer, Dordrecht, 1995 | MR | Zbl
[2] J. L. Lions, Contr-ole Optimal des Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968 | MR
[3] Y. K. Sasaki, “An objective analysis based on the variational method”, J. Meteor. Soc. Japan, 36 (1958), 77–88 | DOI
[4] V. V. Penenko, N. N. Obraztsov, “Variacionnyi metod soglasovaniya polei meteorologicheskikh elementov”, Meteorologiya i gidrologiya, 1976, no. 11, 1–11
[5] V. V. Penenko, Metody chislennogo modelirovaniya atmosfernykh processov, Gidrometeoizdat, L., 1981 | MR
[6] F. X. Le Dimet, O. Talagrand, “Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects”, Tellus A: Dynamic Meteorology and Oceanography, 38:2 (1986), 97–110 | DOI
[7] V. I. Agoshkov, Metody optimal'nogo upravleniya i sopryazhennykh uravnenii v zadachakh matematicheskoi fiziki, IVM RAN, M., 2003
[8] K. Mogensen, M. A. Balmaseda, A. T. Weaver, M. Marti, A. Vidard, “NEMOVAR: a variational data assimilation system for the NEMO ocean model”, ECMWF Newsletter, 120 (2009), 17–22
[9] F. X. Le Dimet, V. Shutyaev, “On deterministic error analysis in variational data assimilation”, Nonlinear Processes in Geophysics, 12 (2005), 481–490 | DOI
[10] I. Gejadze, F. X. Le Dimet, V. P. Shutyaev, “On analysis error covariances in variational data assimilation”, SIAM J. Sci. Comput., 30:4 (2008), 1847–1874 | DOI | MR
[11] I. Gejadze, F. X. Le Dimet, V. P. Shutyaev, “On optimal solution error covariances in variational data assimilation problems”, J. Comp. Phys., 229 (2010), 2159–2178 | DOI | MR | Zbl
[12] I. Gejadze, V. P. Shutyaev, F. X. Le Dimet, “Analysis error covariance versus posterior covariance in variational data assimilation”, Quarterly J. of the Royal Meteorological Society, 139 (2013), 1826–1841 | DOI | MR
[13] Agoshkov V.I., Parmuzin E.I., Shutyaev V.P., “Observational data assimilation in the problem of Black Sea circulation and sensitivity analysis of its solution”, Izvestiya, Atmospheric and Oceanic Physics, 49:6 (2013), 592–602 | DOI | MR
[14] Shutyaev V.P., Parmuzin E.I., “Sensitivity of functionals to observation data in a variational assimilation problem for a sea thermodynamics model”, Numerical Analysis and Applications, 12:2 (2019), 191–201 | DOI | MR | MR
[15] V. V. Alekseev, V. B. Zalesnyi, “Chislennaya model' krupnomasshtabnoi dinamiki okeana”, Vychislitel'nye processy i sistemy, Nauka, M., 1993, 232–253
[16] G. I. Marchuk, V. P. Dymnikov, V. B. Zalesnyi, Matematicheskie modeli v geofizicheskoi gidrodinamike i chislennye metody ikh realizacii, Gidrometeoizdat, L., 1987 | MR
[17] V. I. Agoshkov, A. V. Gusev, N. A. Diansky, R. V. Oleinikov, “An algorithm for the solution of the ocean hydrothermodynamics problem with variational assimilation of the sea level function data”, Russ. J. Numer. Anal. Math. Modelling, 22:2 (2007), 1–10 | MR
[18] Agoshkov V.I., Parmuzin E.I., Shutyaev V.P., “Numerical algorithm for variational assimilation of sea surface temperature data”, Comp. Math. Math. Physics, 48:8 (2008), 1293–1312 | DOI | MR | Zbl
[19] V. B. Zalesny, A. V. Gusev, V. O. Ivchenko, R. Tamsalu, R. Aps, “Numerical model of the Baltic Sea circulation”, Russ. J. Numer. Anal. Math. Modelling, 28:1 (2013), 85–100 | DOI | MR | Zbl
[20] Tikhonov A.N., “On the regularization of ill-posed problems”, Dokl. Akad. Nauk SSSR, 153:1 (1963), 49–52 | MR | Zbl | Zbl
[21] D. G. Cacuci, “Sensitivity theory for nonlinear systems: II. Extensions to additional classes of responses”, J. Math. Phys., 22 (1981), 2803–2812 | DOI | MR
[22] V. P. Shutyaev, Operatory upravleniya i iteracionnye algoritmy v zadachakh variacionnogo usvoeniya dannykh, Nauka, M., 2001
[23] V. B. Zalesny, G. I. Marchuk, V. I. Agoshkov et al., “Numerical simulation of large-scale ocean circulation based on multicomponent splitting method”, Russ. J. Numer. Anal. Math. Modelling, 25:6 (2010), 581–609 | DOI | MR | Zbl
[24] V. I. Agoshkov, E. I. Parmuzin, V. B. Zalesny et al., “Variational assimilation of observation data in the mathematical model of the Baltic Sea dynamics”, Russ. J. Numer. Anal. Math. Modelling, 30:4 (2015), 203–212 | DOI | MR | Zbl
[25] V. I. Agoshkov, E. I. Parmuzin, N. B. Zakharova, V. P. Shutyaev, “Variational assimilation with covariance matrices of observation data errors for the model of the Baltic Sea dynamics”, Russ. J. Numer. Anal. Math. Modelling, 33:3 (2018), 149–160 | DOI | MR | Zbl
[26] N. B. Zakharova, S. A. Lebedev, “Interpolyaciya operativnykh dannykh buev ARGO dlya assimilyacii dannykh v modeli cirkulyacii Mirovogo okeana”, Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa, 7:4 (2010), 104–111
[27] N. B. Zakharova, V. I. Agoshkov, E. I. Parmuzin, “The new method of ARGO buoys system observation data interpolation”, Russ. J. Numer. Anal. Math. Modelling, 28:1 (2013), 67–84 | DOI | MR | Zbl