Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_4_a6, author = {M. Cherif and D. Ziane and A. K. Alomari and K. Belghaba}, title = {Solving the $(1+n)$-dimensional fractional {Burgers} equation by natural decomposition method}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {441--455}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a6/} }
TY - JOUR AU - M. Cherif AU - D. Ziane AU - A. K. Alomari AU - K. Belghaba TI - Solving the $(1+n)$-dimensional fractional Burgers equation by natural decomposition method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 441 EP - 455 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a6/ LA - ru ID - SJVM_2020_23_4_a6 ER -
%0 Journal Article %A M. Cherif %A D. Ziane %A A. K. Alomari %A K. Belghaba %T Solving the $(1+n)$-dimensional fractional Burgers equation by natural decomposition method %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2020 %P 441-455 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a6/ %G ru %F SJVM_2020_23_4_a6
M. Cherif; D. Ziane; A. K. Alomari; K. Belghaba. Solving the $(1+n)$-dimensional fractional Burgers equation by natural decomposition method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 441-455. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a6/
[1] Y. Zhu, Q. Chang, S. Wu, “A new algorithm for calculating Adomian polynomials”, Appl. Math. Comp., 169 (2005), 402–416 | DOI | MR | Zbl
[2] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Heidelberg–Berlin, 2010 | MR | Zbl
[3] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999 | MR | Zbl
[4] D. Kumar, J. Singh, S. Rathore, “Sumudu decomposition method for nonlinear equations”, Int. Math. Forum, 7:11 (2012), 515–521 | MR | Zbl
[5] M. S. Rawashdeh, S. Maitama, “Solving coupled system of nonliear PDEs using the natural decomposition method”, Int. J. of Pure and Appl. Math., 92:5 (2014), 757–776 | DOI | MR
[6] D. Ziane, M. H. Cherif, “Resolution of nonlinear partial differential equations by Elzaki transform decomposition method”, J. of Approximation Theory and Applied Mathematics, 5 (2015), 17–30
[7] V. K. Srivastava, M. K. Awasthi, “$(1+n)$-dimensional Burgers' equation and its analytical solution: A comparative study of HPM, ADM and DTM”, Ain Shams Engineering J., 5 (2014), 533–541 | DOI | MR
[8] A. S. Abdel-Rady, S. Z. Rida, A. A. Mohamed Arafa, H. R. Abdel-Rahim, “Natural transform for solving fractional models”, J. Appl. Math. Phys., 3 (2015), 1633–1644 | DOI
[9] H. M. Baskonus, H. Bulut, Y. Pandir, “The natural transform decomposition method for linear and nonlinear partial differential equations”, Mathematics in Engineering, Science and Aerospace, 5:1 (2014), 111–126 | MR | Zbl
[10] M. Omran, A. Kiliçman, “Natural transform of fractional order and some properties”, J. Cogent Mathem., 3:1 (2016), 1–8 | MR
[11] M. Junaid, “Application of natural transform to Newtonian fluid problems”, Euro. Int. J. of Sci. and Tech., 5 (2016), 138–147
[12] Z. H. Khan, W. A. Khan, “N-transform properties and applications”, NUST J. of Engineering Sciences, 1 (2008), 127–133
[13] F. B. M. Belgacem, R. Silambarasan, “Theory of natural transform”, Mathematics in Engineering, Science and Aerospace, 3 (2012), 105–135
[14] M. S. Rawashdeh, S. Maitama, “Solving nonlinear ordinary differential equations using the NDM”, J. App. Anal. Comp., 5:1 (2015), 77–88 | MR | Zbl
[15] J. Ahmad, Z. Bibi, K. Noor, “Laplace decomposition method using he-s polynomial to Burgers equation”, J. Science and Arts, 27:2 (2014), 131–138 | MR
[16] F. A. Hendi, B. S. Kashkari, A. A. Alderremy, “The variational homotopy perturbation method for solving $((n\times n) + 1)$ dimensional Burgers' equations”, J. App. Math., 2016 (2016), 4146323 | MR | Zbl