Solving the $(1+n)$-dimensional fractional Burgers equation by natural decomposition method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 441-455
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we extend the natural transform combined with the Adomian decomposition method for
solving nonlinear partial differential equations with time-fractional derivatives. We apply the proposed method
to obtain approximate analytical solutions of the $(1+n)$-dimensional fractional Burgers equation. Some
illustrative examples are given, which reveal that this is a very efficient and accurate analytical method for
solving nonlinear fractional partial differential equations.
@article{SJVM_2020_23_4_a6,
author = {M. Cherif and D. Ziane and A. K. Alomari and K. Belghaba},
title = {Solving the $(1+n)$-dimensional fractional {Burgers} equation by natural decomposition method},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {441--455},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a6/}
}
TY - JOUR AU - M. Cherif AU - D. Ziane AU - A. K. Alomari AU - K. Belghaba TI - Solving the $(1+n)$-dimensional fractional Burgers equation by natural decomposition method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 441 EP - 455 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a6/ LA - ru ID - SJVM_2020_23_4_a6 ER -
%0 Journal Article %A M. Cherif %A D. Ziane %A A. K. Alomari %A K. Belghaba %T Solving the $(1+n)$-dimensional fractional Burgers equation by natural decomposition method %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2020 %P 441-455 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a6/ %G ru %F SJVM_2020_23_4_a6
M. Cherif; D. Ziane; A. K. Alomari; K. Belghaba. Solving the $(1+n)$-dimensional fractional Burgers equation by natural decomposition method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 441-455. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a6/