Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_4_a5, author = {V. V. Ostapenko and T. V. Protopopova}, title = {On monotonicity of {CABARET} scheme approximating the multidimensional scalar conservation law}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {431--440}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a5/} }
TY - JOUR AU - V. V. Ostapenko AU - T. V. Protopopova TI - On monotonicity of CABARET scheme approximating the multidimensional scalar conservation law JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2020 SP - 431 EP - 440 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a5/ LA - ru ID - SJVM_2020_23_4_a5 ER -
%0 Journal Article %A V. V. Ostapenko %A T. V. Protopopova %T On monotonicity of CABARET scheme approximating the multidimensional scalar conservation law %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2020 %P 431-440 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a5/ %G ru %F SJVM_2020_23_4_a5
V. V. Ostapenko; T. V. Protopopova. On monotonicity of CABARET scheme approximating the multidimensional scalar conservation law. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 431-440. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a5/
[1] A. Iserles, “Generalized leapfrog methods”, IMA J. Numer. Anal., 6:3 (1986), 381–392 | DOI | MR | Zbl
[2] V. M. Goloviznin, A. A. Samarskii, “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasshchepleniem vremennoi proizvodnoi”, Mat. modelirovanie, 10:1 (1998), 86–100 | MR | Zbl
[3] V. M. Goloviznin, A. A. Samarskii, “Nekotorye svoistva raznostnoi skhemy “Kabare””, Mat. modelirovanie, 10:1 (1998), 101–116 | MR | Zbl
[4] Goloviznin V.M., “Balanced characteristic method for systems of hyperbolic conservation laws”, Doklady Mathematics, 72:1 (2005), 619–623 | MR
[5] P. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comp. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl
[6] V. V. Ostapenko, “O monotonnosti balansno-kharakteristicheskoi skhemy”, Mat. modelirovanie, 21:7 (2009), 29–42 | MR | Zbl
[7] Ostapenko V.V., “On the strong monotonicity of the CABARET scheme”, Computational Mathematics and Mathematical Physics, 52:3 (2012), 387–399 | DOI | MR | Zbl
[8] S. A. Goloviznin V. M. Karabasov, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comput. Phys., 228:19 (2009), 7426–7451 | DOI | MR | Zbl
[9] S. A. Karabasov, V. M. Goloviznin, “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA J., 45:12 (2007), 2861–2871 | DOI
[10] S. A. Karabasov, P. S. Berloff, V. M. Goloviznin, “Cabaret in the ocean gyres”, Ocean Modelling, 30:2 (2009), 155–168 | DOI
[11] Goloviznin V.M., Isakov V.A., “Balance-characteristic scheme as applied to the shallow water equations over a rough bottom”, Computational Mathematics and Mathematical Physics, 57:7 (2017), 1140–1157 | DOI | MR | Zbl
[12] O. A. Kovyrkina, V. V. Ostapenko, “O monotonnosti dvukhsloinoi po vremeni skhemy Kabare”, Mat. modelirovanie, 24:9 (2012), 97–112 | Zbl
[13] Kovyrkina O.A., Ostapenko V.V., “On the monotonicity of the CABARET scheme in the multidimensional case”, Doklady Mathematics, 91:3 (2015), 323–328 | DOI | MR | Zbl
[14] Zyuzina N.A., Ostapenko V.V., “On the monotonicity of the CABARET scheme approximating a scalar conservation law with a convex flux”, Doklady Mathematics, 93:1 (2016), 69–73 | DOI | MR | Zbl
[15] Ostapenko V.V., Cherevko A.A., “Application of the CABARET scheme for calculation of discontinuous solutions of the scalar conservation law with nonconvex flux”, Doklady Physics, 62:10 (2017), 470–474 | DOI | MR