Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2020_23_4_a0, author = {A. L. Ageev and T. V. Antonova}, title = {New accuracy estimates for methods for localizing}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {351--364}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a0/} }
A. L. Ageev; T. V. Antonova. New accuracy estimates for methods for localizing. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 351-364. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a0/
[1] A. N. Tihonov, V. Ya. Arsenin, Metody resheniya nekorrektnyh zadach, Nauka, M., 1979
[2] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Teoriya lineinyh nekorrektnyh zadach i ee prilozheniya, Nauka, M., 1978
[3] V. V. Vasin, A. L. Ageev, Ill-posed problems with a priori information, VSP, Utrecht, 1995 | MR | Zbl
[4] S. Malla, Veivlety v obrabotke signalov, Mir, M., 2005
[5] YA.A. Furman (red.), Vvedenie v konturnyi analiz i ego prilozheniya k obrabotke izobrazhenii i signalov, Fizmatlit, M., 2002
[6] R. Gonsales, R. Vuds, Tsifrovaya obrabotka izobrazhenii, Izdanie 3-e ispravlennoe i dopolnennoe, Tekhnosfera, M., 2012
[7] T. V. Antonova, “Metod lokalizatsii linii razryva priblizhenno zadannoi funktsii dvuh peremennyh”, Sib. zhurn. vychisl. matematiki, 15:4, 345–357 | Zbl
[8] A. L. Ageev, T. V. Antonova, “Approksimatsiya linii razryva zashumlennoi funktsii dvuh peremennyh”, Sib. zhurn. industr. matematiki, 15:1(49) (2012), 3–13 | Zbl
[9] A. L. Ageev, T. V. Antonova, “Diskretnyi algoritm lokalizatsii linii razryva funktsii dvuh peremennyh”, Sib. zhurn. industr. matematiki, 20:4(72) (2017), 3–12 | DOI | Zbl
[10] A. L. Ageev, T. V. Antonova, “K voprosu o global-noi lokalizatsii linii razryva funktsii dvuh peremennyh”, Tr. In-ta matem. i mekhaniki, 24, no. 2, 2018, 12–23
[11] A. L. Ageev, T. V. Antonova, “O lokalizatsii razryvov pervogo roda dlya funktsii ogranichennoi variatsii”, Tr. In-ta matem. i mekhaniki UrO RAN, 18, no. 1, 2012, 56–68
[12] A. L. Ageev, T. V. Antonova, “New methods for the localization of discontinuities of the first kind for functions of bounded variation”, J. Inverse Ill-Posed Probl., 21:2 (2013), 177–191 | DOI | MR | Zbl