New accuracy estimates for methods for localizing
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 351-364.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the ill-posed problem of localizing (finding the position) the discontinuity lines of a function of two variables, provided that the function of two variables is smooth outside of the discontinuity lines, and at each point on the line has a discontinuity of the first kind. There is a uniform grid with the step $\tau$. It is assumed that we know the averages on the square $\tau\times\tau$ of the perturbed function at each node of the grid. The perturbed function approximates the exact one in space $L_2(\mathbb{R}^2)$. The perturbation level $\delta$ is known. Earlier, the authors investigated (obtained accuracy estimates) the global discrete regularizing algorithms for approximating a set of discontinuity lines of a noisy function. However, stringent smoothness conditions were superimposed on the discontinuity line. The main result of this paper is the improvement of localizing the accuracy estimation methods, which allows replacing the smoothness requirement with a weaker Lipschitz condition. Also, the conditions of separability are formulated in a more general form, as compared to previous studies. In particular, it is established that the proposed algorithm make it possible to obtain the localization accuracy of the order $O(\delta)$. Also, estimates of other important parameters characterizing the localization algorithm are given.
@article{SJVM_2020_23_4_a0,
     author = {A. L. Ageev and T. V. Antonova},
     title = {New accuracy estimates for methods for localizing},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {351--364},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a0/}
}
TY  - JOUR
AU  - A. L. Ageev
AU  - T. V. Antonova
TI  - New accuracy estimates for methods for localizing
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 351
EP  - 364
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a0/
LA  - ru
ID  - SJVM_2020_23_4_a0
ER  - 
%0 Journal Article
%A A. L. Ageev
%A T. V. Antonova
%T New accuracy estimates for methods for localizing
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 351-364
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a0/
%G ru
%F SJVM_2020_23_4_a0
A. L. Ageev; T. V. Antonova. New accuracy estimates for methods for localizing. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 4, pp. 351-364. http://geodesic.mathdoc.fr/item/SJVM_2020_23_4_a0/

[1] A. N. Tihonov, V. Ya. Arsenin, Metody resheniya nekorrektnyh zadach, Nauka, M., 1979

[2] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Teoriya lineinyh nekorrektnyh zadach i ee prilozheniya, Nauka, M., 1978

[3] V. V. Vasin, A. L. Ageev, Ill-posed problems with a priori information, VSP, Utrecht, 1995 | MR | Zbl

[4] S. Malla, Veivlety v obrabotke signalov, Mir, M., 2005

[5] YA.A. Furman (red.), Vvedenie v konturnyi analiz i ego prilozheniya k obrabotke izobrazhenii i signalov, Fizmatlit, M., 2002

[6] R. Gonsales, R. Vuds, Tsifrovaya obrabotka izobrazhenii, Izdanie 3-e ispravlennoe i dopolnennoe, Tekhnosfera, M., 2012

[7] T. V. Antonova, “Metod lokalizatsii linii razryva priblizhenno zadannoi funktsii dvuh peremennyh”, Sib. zhurn. vychisl. matematiki, 15:4, 345–357 | Zbl

[8] A. L. Ageev, T. V. Antonova, “Approksimatsiya linii razryva zashumlennoi funktsii dvuh peremennyh”, Sib. zhurn. industr. matematiki, 15:1(49) (2012), 3–13 | Zbl

[9] A. L. Ageev, T. V. Antonova, “Diskretnyi algoritm lokalizatsii linii razryva funktsii dvuh peremennyh”, Sib. zhurn. industr. matematiki, 20:4(72) (2017), 3–12 | DOI | Zbl

[10] A. L. Ageev, T. V. Antonova, “K voprosu o global-noi lokalizatsii linii razryva funktsii dvuh peremennyh”, Tr. In-ta matem. i mekhaniki, 24, no. 2, 2018, 12–23

[11] A. L. Ageev, T. V. Antonova, “O lokalizatsii razryvov pervogo roda dlya funktsii ogranichennoi variatsii”, Tr. In-ta matem. i mekhaniki UrO RAN, 18, no. 1, 2012, 56–68

[12] A. L. Ageev, T. V. Antonova, “New methods for the localization of discontinuities of the first kind for functions of bounded variation”, J. Inverse Ill-Posed Probl., 21:2 (2013), 177–191 | DOI | MR | Zbl