Parametric analysis of stochastic oscillators by the statistical modeling
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 339-350.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the influence of the Wiener and the Poisson random noises on the behavior of the linear and Van der Pol oscillators with the help of the statistical modeling method. For a linear oscillator, the analytical expression of the autocovariance function of the solution to stochastic differential equation (SDE) is obtained. This expression along with the formulas of mathematical expectation and variance of the SDE solution allows us to carry out the parametric analysis and to investigate the accuracy of estimates of moments of the numerical solution to the SDE obtained with the help of the generalized Euler explicit method. For the Van der Pol oscillator, the influence of the Poisson component on the oscillation nature of the first and the second moments of the SDE solution with a large value of jumps is numerically investigated.
@article{SJVM_2020_23_3_a7,
     author = {M. A. Yakunin},
     title = {Parametric analysis of stochastic oscillators by the statistical modeling},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {339--350},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a7/}
}
TY  - JOUR
AU  - M. A. Yakunin
TI  - Parametric analysis of stochastic oscillators by the statistical modeling
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2020
SP  - 339
EP  - 350
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a7/
LA  - ru
ID  - SJVM_2020_23_3_a7
ER  - 
%0 Journal Article
%A M. A. Yakunin
%T Parametric analysis of stochastic oscillators by the statistical modeling
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2020
%P 339-350
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a7/
%G ru
%F SJVM_2020_23_3_a7
M. A. Yakunin. Parametric analysis of stochastic oscillators by the statistical modeling. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 339-350. http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a7/

[1] S. S. Artem'ev, M. A. Marchenko, V. D. Korneev i dr., Analiz stohasticheskih kolebanii metodom Monte-Karlo na superkomp'yuterah, Izd-vo SO RAN, Novosibirsk, 2016

[2] M. Gitterman, “Classical harmonic oscillator with multiplicative noise”, Physica A, 352 (2005), 309–334 | DOI

[3] M. Gitterman, “New stochastic equation for a harmonic oscillator: Brownian motion with adhesion”, J. Phys.: Conf. Ser., 248:1 (2010) | DOI

[4] S. S. Guo, G. K. Er, “The probabilistic solution of stochastic oscillators with even nonlinearity under poisson excitation”, Central European J. of Physics, 10:3 (2012), 702–707

[5] G. K. Er, H. T. Zhu, V. P. Iu, K. P. Kou, “PDF solution of nonlinear oscillators subject to multiplicative Poisson pulse excitation on displacement”, Nonlinear Dynamics, 55:4 (2009), 337–348 | DOI | MR | Zbl

[6] Ruoshi Yuan, Xinan Wang, Yian Ma, Bo Yuan, Ao. Ping, “Exploring a noisy van der Pol type oscillator with a stochastic approach”, Physical Review E, 87:6 (2013) | DOI

[7] S. S. Artem'ev, M. A. Yakunin, “Parametricheskii analiz ostsilliruyuschih reshenii SDU s vinerovskoi i puassonovskoi sostavlyayuschimi metodom Monte-Karlo”, Sib. zhurn. industrial'noi matematiki, 20:2 (2017), 3–14 | Zbl

[8] E. Platen, N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer-Verlag, Berlin–Heidelberg, 2010 | MR | Zbl

[9] V. I. Tihonov, Statisticheskaya radiotekhnika, Radio i svyaz, M., 1982

[10] J. Jacod, A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 2002 | MR

[11] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainyh protsessov, Fizmatlit, M., 2005

[12] A. A. Borovkov, Teoriya veroyatnostei, Editorial URSS, M., 1999