@article{SJVM_2020_23_3_a7,
author = {M. A. Yakunin},
title = {Parametric analysis of stochastic oscillators by the statistical modeling},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {339--350},
year = {2020},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a7/}
}
M. A. Yakunin. Parametric analysis of stochastic oscillators by the statistical modeling. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 23 (2020) no. 3, pp. 339-350. http://geodesic.mathdoc.fr/item/SJVM_2020_23_3_a7/
[1] S. S. Artem'ev, M. A. Marchenko, V. D. Korneev i dr., Analiz stohasticheskih kolebanii metodom Monte-Karlo na superkomp'yuterah, Izd-vo SO RAN, Novosibirsk, 2016
[2] M. Gitterman, “Classical harmonic oscillator with multiplicative noise”, Physica A, 352 (2005), 309–334 | DOI
[3] M. Gitterman, “New stochastic equation for a harmonic oscillator: Brownian motion with adhesion”, J. Phys.: Conf. Ser., 248:1 (2010) | DOI
[4] S. S. Guo, G. K. Er, “The probabilistic solution of stochastic oscillators with even nonlinearity under poisson excitation”, Central European J. of Physics, 10:3 (2012), 702–707
[5] G. K. Er, H. T. Zhu, V. P. Iu, K. P. Kou, “PDF solution of nonlinear oscillators subject to multiplicative Poisson pulse excitation on displacement”, Nonlinear Dynamics, 55:4 (2009), 337–348 | DOI | MR | Zbl
[6] Ruoshi Yuan, Xinan Wang, Yian Ma, Bo Yuan, Ao. Ping, “Exploring a noisy van der Pol type oscillator with a stochastic approach”, Physical Review E, 87:6 (2013) | DOI
[7] S. S. Artem'ev, M. A. Yakunin, “Parametricheskii analiz ostsilliruyuschih reshenii SDU s vinerovskoi i puassonovskoi sostavlyayuschimi metodom Monte-Karlo”, Sib. zhurn. industrial'noi matematiki, 20:2 (2017), 3–14 | Zbl
[8] E. Platen, N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer-Verlag, Berlin–Heidelberg, 2010 | MR | Zbl
[9] V. I. Tihonov, Statisticheskaya radiotekhnika, Radio i svyaz, M., 1982
[10] J. Jacod, A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 2002 | MR
[11] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainyh protsessov, Fizmatlit, M., 2005
[12] A. A. Borovkov, Teoriya veroyatnostei, Editorial URSS, M., 1999